universal mechanism

多体系统动力学仿真

UM 软件强基训练系列教程 (03)

四川同算科技有限公司

2022年5月

《UM软件强基训练系列教程》面向具有 UM 软件使 用基础的用户,作为对《UM 软件入门系列教程》和《UM 培训教程》的补充和强化,教程中使用的部分例子取自 UM 软件自带的模型。

希望读者重视基础,勤加练习,多多思考,相信通过每一次练习都能有所收获。

本例模型路径: C:\Users\Public\Documents\UM Software Lab\UniversalMechanism\9\SAMPLES\LIBRARY\ZSurfaceAnd Wheel

目录

1	UM IN	IPUT	建植	製过	程.			••••	••••	 ••••	••••			••••	•••••	4
1.1	建立)	几何样	莫型.		•••		••		•••	 ••		•••	••	•••	• • •	. 4
1.2	定义国	刚体参	\$数.	•••	•••		•••		•••	 •••		•••	•••	•••		10
1.3	描述领	皎		•••	•••		••		•••	 ••	•••	•••	••	•••	•••	11
1.4	添加;	力元.		•••	•••		••		•••	 ••		•••	••	••	•••	12
2		IMUL	.ATI	ON	仿	真过	し程			 	••••					14
2. 1	工况	1			•••		••		•••	 		•••	•••	•••	• • •	14
2. 2	工况	2			•••		••		•••	 ••		•••	••	•••	• • •	18
2. 3	工况	3					•••			 		•••	••			20

1 UM Input 建模过程

1.1 建立几何模型

Wheel: 由一个 Profiled 和十个 Cone 组成,颜色分别为黑色和灰色。

Profiled Parameters:

Profile:选择 Curve 2D 截面类型,比例系数 Scale X 和 Scale Y 均为 1, 离散点数 Number of points 为 16,勾选 Close,点开 Description 右端的 曲线编辑器,可以直接输入一系列坐标点,也可以先在记事本中准备好 如下两列数据,并修改后缀为 crv (注: *.crv 格式的文件可以由 UM 软 件的曲线编辑器读取)。

Description GO pos	ition		wheel_curv	e.crv - 记事本	
Profiled			文件(F) 编辑(E)	格式(O) 查看	(V) 帮助(H)
Type: Profile Comments/Text at Parameters Color Profile Axis curv Type of section	d V + (tribute C rs GE position Material e	. • • • • • • • • • • • • • • • • • • •	-0.1 -0 0.1 -0 0.15 -0 0.15 -0 0.15 -0 0.15 -0 0.15 -0 0.15 -0 0.15 -0 0.15 -0 -0.1 -0 -0.15 -0).5715).5715).5215).3715).3215).3215).3215).3715	
() Circle	◯ Spline 3D		-0.15 -0).5215	
Curve 2D			-0.1 -0	.5715	
Scale X:	1.000	1			
Scale Y:	1.000	*∕₊			
Number of points:	16	1			
Close			1		
Description:	(none)		、 第1行, 第13	列 100%	Windows (CR

在曲线编辑器窗口,点击打开按钮,加载 wheel_curve.crv 文件,并将第 3、5、7、9点处线条类型改为 Circle,这样表示线段 2-3, 4-5, 5-7, 8-9 均为圆弧。

Axis curve: 选择 Circle 轴线类型, 比例系数 Scale X 和 Scale Y 均为 0,

离散点数 Number of points:35,如此就实现了截面绕坐标轴的旋转。

Type: 🔚 Profile	.d ~ + 🕩			\sim	\sim
Comments/Text at	tribute C				\leq
Parameters Color	rs GE position Material				
Profile Axis curv	e				
Type of curve:	Cirde	\sim			
Scale X	0.000	2			
Scale Y:	0.000	2			_
Number of points:	35	14			
Reverse norma	on ends				
Do not rotate a	about the tangent		+		

Conel Parameters: R2=R1=0.3215 (m), h=0.18 (m).

GE Position: 先绕 X 轴旋转 90(°),旋转后再沿 Z 轴移动-0.09 (m)。

Name: Wheel S + + m m GO position	
Comments/Text attribute C Profiled Cone Cone Cone	Cc • •
Type: 🔥 Cone 🗸 🕇 🗭	Û
Description GO position Comments/Text attribute C	
Profiled Cone Cone Cc +	
Type: 🔥 Cone 🗸 🕂 📑 🗑 Parameters Colors GE position Materia	ł
Comments/Text attribute C	C
	C
Parameters Colors GE position Material	
Padius (P2): 0.3215 C	
Rotation Rotation	
Radius (R1): 0.3215 C X V 90	U
Height (h): 0.18 C V	C
Number of points	C
Bottom circle: 31	
Generatrix:	
	<u> </u>
Angles: 0.00 1 0.00 1	C
Closing: (none) ~ z: -0.09	C

Cone2 Parameters: R2=R1=0.1 (m), h=0.21 (m).

GE Position: 先绕 X 轴旋转 90(°),旋转后再沿 Z 轴移动-0.105 (m)。

Cone3 Parameters: R2=R1=0.015 (m), h=0.225 (m).

GE Position: 先绕 X 轴旋转 90(°), 旋转后再沿 X 轴移动 0.2572 (m), 沿 Z 轴移动-0.1125 (m)。

复制 Cone3 七次,对应按下表修改 GE Position 参数。

序号	Х	Y
Cone4	-0.2572	0
Cone5	0	0.2572
Cone6	0	-0.2572
Cone7	0.2572*cos(pi*0.25)	0.2572*sin(pi*0.25)
Cone8	0.2572*sin(pi*0.25)	-0.2572*cos(pi*0.25)
Cone9	-0.2572*cos(pi*0.25)	-0.2572*sin(pi*0.25)
Cone10	-0.2572*sin(pi*0.25)	0.2572*cos(pi*0.25)

Surface: 由 2 个 Box 和 1 个 Polyhedron 组成,颜色分别为棕色、棕色和红色。

Box1 Parameters: A=2, B=3, C=0.5

GE Position:沿Z 轴移动-0.5(m)。

Box2 Parameters: A=4, B=3, C=0.5

GE Position:沿X轴移动 3.5(m),再沿Z轴移动-0.5(m)。

Polyhedron Parameters: 先创建 6 个空间点, 1(1, 0.5, 0)、2(1, -0.5, 0)、3(0, -0.5,0.2)、4(-1, -0.5, 0)、5(-1, 0.5, 0)、6(0, 0.5, 0.2),再根据点(1,2,3,6)和(3,4,5,6)生成平面。

GE Position:沿X轴移动4(m)。

Descrip	tion GO p	position		
Box	Box	Polyhedro		Name: Surface
Comn	ents/Text	yhedron V	External normal GE position	Description GO position
Mat	terial	attribute C		Box Box Polyhedron
Par	rameters	Texture		Type: Polyhedron V + I III IIII
Vertic	ies:	Colors		Comments/Text attribute C
1	1	0.5	0	Material Texture External normal Parameters Colors GE position
2	1	-0.5	0	
3	0	-0.5	0.2	
4	-1	-0.5	0	Translation x: 4 y: C
5	-1	0.5	0	
6	0	0.5	0.2	
Conv + Fill/Po I J 3	ex polygor olygon ,2,3,6 ,4,5,6	ns: •		z: C Rotation

8

1.2 定义刚体参数

Base0: Base0 是每个 UM 多体系统中固有的零号物体,不需要单独创建,可以赋予 几何图形,如下图,将 Surface 赋给 Base0,即作为 Scene image。

Body1: 命名为 Wheel,选择几何 Wheel,设置质量 Mass=50(kg),三个主轴方向的转动惯量均为 5(kg·m²),质心为几何中心,即坐标原点。

Universal Mechanism 9

强基训练

1.3 描述铰

jBase0_Wheel:选择 Base0 作为铰的 1 号物体, Wheel 为 2 号物体, 类型为 Quaternion (四元素铰,适合模拟具有任意空间姿态的刚体)。

Object wheelsurface	- 0	×
Object Object Object Object Object Object Object Object Overs Ove	Image:	~
- gb Attributes @ Subsystems ✓ ♣ Images	Base0 Wheel Type: Quaternion	• ~
> 🗳 Wheel Surface	Joint points Base0	↓
Wheel ✓ .	Wheel C C	₽
G Scalar torques	Initial orientation Rotation angle:	
Charial forces	ex: 1.0000000	
← 💾 + 🛍 📫 🏝 👘 💿	ez: 0.0000000	2
Name Expression Value	0.0000000	1
	Translational coordinates	
	x: 0.0000000	1
	y: 0.0000000	1
< >	z: 0.0000000	<u>×</u>

Joint points: (0, 0, 0.6) 和 (0, 0, 0);

1.4 添加力元

Contact force1:选择 Wheel 作为力元的 1 号物体, Base0 为 2 号物体, Type 为 Circle-Z surface。

Parameters: Stiffness coef.(c)=100000, Damping coef.(d)=1000.

Geometry: 通过圆心坐标(0, -0.11, 0)、半径 0.57(m)和法向(0, 1, 0)确 定用于接触计算的圆(注: 与刚体 Wheel 的几何无关)。

Z-surface: 先选择 Graph.object, 再从列表中选择先前建立的几何图形 Surface 图形, 点击下图中的更新按钮, 程序自动从几何图形 Surface 中获取曲面数据 用于接触计算。

Name: contactforce1		•	Name: Contactforce1 + +
Comments/Text attribute	C		Commonte Travit attribute C
			Comments/rext attribute C
Body1:	Body2:		
Wheel -	Base0	-	Body1: Body2:
Type: 🔗 Circle-7 surface	<u></u>		Wheel Base0 •
			Type: 🦨 Circle-Z surface 🗸 🗸
Parameters Geometry			Parameters Geometry
Sliding parameters			
Friction coef. (f):	0.25	C	Center:
Friction coef. (f0):	0.3	C	C -0.11 C C
Velocity (vs):		C	Radius: 0.57 C
Stribeck coef. (delta):	1	C	Нормаль:
Friction coef. (nu):		C	
Parameters of normal	contact		Z-surface (Base0)
Stiffness coef. (c):	100000	C	Type of dependence
Damping coef. (d):	1000	C	O Expression I Graph. object
Rolling parameters			○ Function
Delling fristian (Vacily)			Curfere
Rolling medon (Kroll):			Surrace 🗸 🖉
Spinning friction (Kspin):		C	Compute normal by:
Velocity (w*):	0.01	C	surface \checkmark

复制 Contact force1 生成 Contact force2, 修改圆心坐标(0, 0.11, 0)。

Name: Contact force2	+ 4	1						
Comments/Text attribute (0		Name: Cont	tact fo	rce2	+	Ð	Ĩ
			Comments/T	ext at	tribute C			
Body1:	Body2:							
Wheel	Base0	-	Podu 1			Rodu 2		
Type: 🦨 Circle-Z surface		~	Wheel		-	Base0		•
Parameters Geometry			Type: 🔏 Circ	de-Z si	urface			~
Sliding parameters			Parameters	Geon	netry			
Friction coef. (f):	0.25	С					_	
Friction coef. (f0):	0.3	С	Center:				5	
Velocity (vs):		С		С	0.11	<u> </u>		C
Stribeck coef. (delta):	1	С	Radius:		0.57			C
Friction coef. (nu):		С	Нормаль:	n	1	n		n
Parameters of normal	contact		Z gurface /E	2000)	-			
Stiffness coef. (c):	100000	С	Type of dep	pender	nce			
Damping coef. (d):	1000	C	CExpressi	ion		Graph. obje	ct	
Rolling parameters			○ Function	ı				
Rolling friction (Kroll):		С	Surface				~	2
Spinning friction (Kspin):		С	Compute nor	rmal by	v:			
Velocity (w*):	0.01	C	surface				~	

完成建模: 切换为全局显示, 保存模型。

2 UM Simulation 仿真过程

本例中建立了一个刚性车轮和一个具有典型障碍特征(凹槽和三角坡)的地形,并 定义了车轮与地形的接触关系。下面,请运行 UM Simulation 程序,加载模型。

2.1 工况1

打开仿真控制界面,设置仿真时间为 5s,输出的数据步长为 0.005s,勾选 Delay to real time simulation。

Object sim	ulation inspector						
Solver	Initial condition	ns Object v	ariables	XVA	Informa	tion Tools	
Simulation p	rocess parameters	Solver options	Type of	coordinate	es for bodies		
Solver BDF ABM Park Gear 2 Park Park Park Park Error toleral Delay to Keep system Computa Block	arallel	pe of solution) Null space meth) Range space me > >	od (NSM) ethod (RS	М)			
In	Integration Message Close						

打开变量向导,分别创建车轮中心在 X 方向和 Z 方向的位移变量。

🔄 Wizard of variables			×
🕪 Reactions 📑 Coordinates	Solver variables	es 🛛 🔐 Contact forces	🚼 Contact forces for bodies
🥩 Variables for group of bodies	🔍 Joint forces 🛛 🛕 Angular variable	s 🛃 Linear variables	a+b Expression User variables
🖃 🗹 wheelsurface	Selected		
Wheel	Wheel		
	Coordinates of point in the body-fixe	d frame of reference	
	0	0	0
	Type		
	Coordinate	O Bipolar vecto	r
		O Bipolar veloc	ty
	O Acceleration	O Bipolar accel	eration
	Companyant		
	© X OY	Oz Olv	I Ov
	Resolved in SC of body		
	Base0		• 1
	<u>к</u>		
📑 Wizard of variables			×
🕪 Reactions 🛛 📋 Coordinates	O Solver variables	es 🛛 🔐 Contact forces	🚼 Contact forces for bodies
Variables for group of bodies	🙊 Joint forces 🛛 🛕 Angular variable	s 🛃 Linear variables	a+b Expression User variables
□ ✓ wheelsurface	Selected		
Wheel	Wheel		
	Coordinates of point in the body-fixe	ed frame of reference	
	0	0	0
	Ocordinate	O Binolar vecto	ar.
	Velocity		ity
			eration
	Component		
		0- 01	1 0.
	Resolved in SC of body		
	Resolved in SC of body Base0		- U

转到初始条件页面,设置车轮沿 X 方向的初始线速度 0.3(m/s),四元素铰的第三个转动坐标初始速度为 2.6。

Object si	imul	ation inspector		
Solve	er	Initial conditions	Object variables XV	A Information Tools
Coordina	tes	Constraints on initial o	onditions	
🖻 E	9	⊕	(=0 V=0	
	~	Coordinate	Velocity	Comment
1.1		0	0.3	jBase0_Wheel 1c
1.2		0	0	jBase0_Wheel 2c
1.3		0	0	jBase0_Wheel 3c
1.4		1	0	jBase0_Wheel q0
1.5		0	0	jBase0_Wheel q1
1.6		0	2.6	jBase0_Wheel q2
1.7		0	0	jBase0_Wheel q3
<				>
Messa	age	dx= 0.1 🛄	da= 0.1	
Number of	of d.o	o.f. = 7		
Integration			Message	Close

执行仿真,在动画窗口可看见车轮沿X轴正向运动到达凹槽时略微弹起,但未能跨过凹槽,最后在该处达到静止状态。

车轮中心在 X 方向和 Z 方向的位移时程如下图。

2.2 工况2

中断上一仿真进程,修改仿真时间为 10s,将车轮沿 X 方向的初始线速度修改为 1.5(m/s)。

Object si	mula	ation inspector				
Solve	r	Initial conditions	Object variables XV/	A Information Tools		
Coordinates		Constraints on initial conditions				
🖻 E	3		=0 v=0			
	✓	Coordinate	Velocity	Comment		
1.1		0	1.5	jBase0_Wheel 1c		
1.2		0	0	jBase0_Wheel 2c		
1.3		0	0	jBase0_Wheel 3c		
1.4		1	0	jBase0_Wheel q0		
1.5		0	0	jBase0_Wheel q1		
1.6		0	2.6	jBase0_Wheel q2		
1.7		0	0	jBase0_Wheel q3		
<				>		
Messa Number o	ge fd.o	dx= 0.1	da= 0.1			
Integration			Message	Close		

执行仿真,在动画窗口可看见车轮沿X轴正向运动顺利越过凹槽,并向三角坡运动, 但未能越过坡顶,最后又反向运动。

Universal Mechanism 9

车轮中心在 X 方向和 Z 方向的位移时程如下图。

2.3 工况3

中断上一仿真进程,将车轮沿 X 方向的初始线速度改为 2.5(m/s)。

Solver		Initial conditions	Object variables XV	A Information Tools		
Coordinates		Constraints on initial conditions				
🖻 🖻			=0 v=0			
	~	Coordinate	Velocity	Comment		
1.1		0	2.5	jBase0_Wheel 1c		
1.2		0	0	jBase0_Wheel 2c		
1.3		0	0	jBase0_Wheel 3c		
1.4		1	0	jBase0_Wheel q0		
1.5		0	0	jBase0_Wheel q1		
1.6		0	2.6	jBase0_Wheel q2		
1.7		0	0	jBase0_Wheel q3		
<				2		
Messag	ge	dx= 0.1	da= 0.1 🛄			
Number of	r d.o).T. = /				

开始仿真,在动画窗口可看见车轮先后越过凹槽和三角坡,最后掉落。

车轮中心在 X 方向和 Z 方向的位移时程如下图。

