universal mechanism

多体系统动力学仿真

UM 软件强基训练系列教程 (10)

四川同算科技有限公司

2022年7月

《UM软件强基训练系列教程》面向具有 UM 软件使 用基础的用户,作为对《UM 软件入门系列教程》和《UM 培训教程》的补充和强化,教程中使用的部分例子取自 UM 软件自带的模型。

希望读者重视基础, 勤加练习, 多多思考, 相信通过 每一次练习都能有所收获。

本例模型路径: C:\Users\Public\Documents\UM Software Lab\Universal Mechanism\9\SAMPLES\CAD\FourCylinder Engine

目录

1	四개	中程发动机建模	4
	1.1	导入几何模型	4
	1.2	定义刚体参数	5
	1.3	描述铰	6
	1.4	添加力元1	4

1 四冲程发动机建模

1.1 导入几何模型

请先从同算科技网站(<u>www.tongsuan.cn</u>)资料下载页面下载本例模型素材(<u>四冲程</u>发动机几何素材.zip),然后解压缩。

运行 UM Input,新建模型,依次导入 Casing、Crankshaft、Camshaft、Pump、 Valve1、Valve2、Valve3、Valve4、Valve5、Valve6、Valve7、Valve8、Rod1、Rod2、Rod3、 Rod4、Piston1、Piston2、Piston3、Piston4 和 Spring,共计 21 个几何模型。

1.2 定义刚体参数

依次创建刚体: Casing、Crankshaft、Camshaft、Pump、Valve1、Valve2、Valve3、 Valve4、Valve5、Valve6、Valve7、Valve8、Rod1、Rod2、Rod3、Rod4、Piston1、Piston2、 Piston3 和 Piston4, 共 20 个。

分别赋予同名的几何图形,并勾选 Compute automatically,自动计算出刚体的质量、 质心和转动惯量参数。

1.3 描述铰

jBase0_Casing:选择 Base0 作为铰的 1 号物体, Casing 为 2 号物体, 类型为 6 d.o.f.。 保持连接点为缺省,取消所有自由度,使得发动机壳体和 Base0 固结在一起。

jCasing_Crankshaft:选择 **Casing** 作为铰的 1 号物体, **Crankshaft** 为 2 号物体, 类型为 Rotational。

Joint points (-0.0276, -0.22, 0.05) 和 (-0.0276, -0.22, 0.05);

Joint Vectors (1, 0, 0) 和 (1, 0, 0);

Description: 勾选 Prescribed function of time, 选择 Expression, 输入角位移表 达式 *w1*t*, 给 *w1* 赋值 *10*(rad/s)。

Body1: Body2: Name: jCasing_Crankshaft + L+ III	\bigtriangledown
Casing Crankshaft Body1: Body2:	
Type: Kotational Casing Crankshaft	•
Geometry Description Type: <a> Rotational	~
Joint points Geometry Description	
Casing Configuration	
-0.0276 C -0.22 C 0.05 C Rotation: 0.0000000000	\angle
Crankshaft 💦 Shift: 0.0000000000	\angle
-0.0276 C -0.22 C 0.05 C Joint coordinate	
Joint vectors	
Casing axis X : (1,0,0)	
1 1 1 0 1 0 1 File	
Curve	
Crankshaft axis X : (1,0,0) V O Time-table	
1 <u>n</u> 0 <u>n</u> 0 <u>n</u> w1*t	t

jCasing_Camshaft: 选择 **Casing** 作为铰的 1 号物体, **Camshaft** 为 2 号物体, 类型 为 Rotational。

Joint points (0, 0.0985, 0.0415) 和 (0, 0.0985, 0.0415);

Joint Vectors (1, 0, 0) 和 (1, 0, 0);

Description: 勾选 Prescribed function of time, 选择 Expression, 输入角位移表

达式 w2*t, 给 w2 赋值 5(rad/s)。

Name: jCasing_Camshaft 🕂 🚺	\bigtriangledown	
Body1: Body2:		Name: Casing_Camshaft + L+ W
Casing Camshaft	-	Body1: Body2:
Type:	~	Casing Camshaft
Geometry Description		Type: < Rotational 🗸
		Geometry Description
Casing		Configuration
C 0.0985 C 0.0415	С	Rotation: 0.0000000000 1
Camebaft		Shift: 0.0000000000 🔀
C 0.0985 C 0.0415	С	Joint coordinate
		Prescribed function of time
Joint vectors		Type of description
Casing axis X : (1,0,0)	\sim	Expression File
1 <u>n</u> 0 <u>n</u> 0	n	O Function O Curve
avis X : (1.0.0)	\sim	○ Time-table
	n	w2*t t

jCasing_Pump:选择Casing作为铰的1号物体,Pump为2号物体,类型为Rotational。

Joint points (0, -0.105, -0.015) 和 (0, -0.105, -0.015);

Joint Vectors (1, 0, 0) 和 (1, 0, 0);

Description: 勾选 Prescribed function of time, 选择 Expression, 输入角位移表 达式 *w3*t*, 给 *w3* 赋值 *l*(rad/s)。

Name: jCasing_Pump 🕂 🕩 🕅 🗸		Name: jCasing_Pump 🕂 💽 🗑	\bigtriangledown
Body1: Body2: Casing Pump	-	Body1: Body2: Casing VIPump	•
Type: Kotational	\sim	Type: < Rotational	~
Geometry Description		Geometry Description Configuration Rotation: Rotation: 0.00000000000 Shift: 0.00000000000 Joint coordinate Prescribed function of time	1
Joint vectors		Type of description	
Casing axis X : (1,0,0) V		Expression O File	
		O Function O Curve	
Pump axis X : (1,0,0) ~		○ Time-table	
	ì	w3*t	t

jCasing_Valve1:选择 Casing 作为铰的 1 号物体, Valve1 为 2 号物体, 类型为 Translational。

Joint points (0, 0, 0) 和 (0, 0, 0);

Joint Vectors (0, 1, 0) 和 (0, 1, 0)。

Name: jCasing_Valve1 + 💽 🗑	\bigtriangledown	
Body1: Body2:		
Casing Valve1	-	
Type: 🚄 Translational	\sim	
Geometry Description Joint force		
Joint points	R	TH AA AA AA
Casing	13	
	C	
Valve1	1 .3	
	C	
Joint vectors		
Casing axis Y : (0,1,0)	~	
	n	
Valve1 axis Y : (0,1,0)	\sim	
0 <u>n</u> 1 <u>n</u> 0	n	
		-

复制铰 jCasing_Valve1 七次,分别将 2 号物体修改为 Valve2、Valve3、Valve4、 Valve5、Valve6 、Valve7 、Valve8,参数不变。

> jCasing_Valve1 jCasing_Valve2 jCasing_Valve3 jCasing_Valve4 jCasing_Valve5 jCasing_Valve6 jCasing_Valve7 jCasing_Valve8

jCrankshaft_Rod1:选择 **Crankshaft** 作为铰的 1 号物体, **Rod1** 为 2 号物体, 类型 为 Rotational。

Joint points (0.043, -0.26, 0.05) 和 (0.043, -0.26, 0.05);

Joint Vectors (1, 0, 0) 和 (1, 0, 0)。

	Name: jCrankshaft_Rod1 🕂 手 🛅 🗢	
	Body1: Body2:	
	Crankshaft 🗾 Rod1 🗨	
	Type: < Rotational 🗸	
	Geometry Description Joint force	
	Joint points Crankshaft	
	0.043 C -0.26 C 0.05 C	
	Rod1 5	
	0.043 C -0.26 C 0.05 C	
	Joint vectors	
	Crankshaft axis X : (1,0,0)	
	Rod1 axis X : (1,0,0) ~	
1		

复制铰 jCrankshaft_Rod1 三次,分别将 2 号物体修改为 Rod2、Rod3、Rod4, 铰坐 标分别如下:

jCrankshaft_Rod2: (0.043, -0.18, 0.05) 和 (0.043, -0.18, 0.05); jCrankshaft_Rod3: (0.043, -0.18, 0.05) 和 (0.043, -0.18, 0.05); jCrankshaft_Rod4: (0.043, -0.26, 0.05) 和 (0.043, -0.26, 0.05)。

jCasing_Piston1:选择 Casing 作为较的 1 号物体, Piston1 为 2 号物体, 类型为 Translational。

Joint points (0, 0, 0) 和 (0, 0, 0);

Joint Vectors (0, 1, 0) 和 (0, 1, 0)。

Name: jCasing_Piston1 🕂 💽 觉 🗢	
Body1: Body2:	
Casing Piston 1	
Type: 🚄 Translational 🗸	
Geometry Description Joint force	
Joint points	
Casing しん	
Piston 1	
Joint vectors	
Casing axis Y : (0,1,0) ~	
0 <u>n</u> 1 <u>n</u> 0 <u>n</u>	
Piston 1 axis Y : (0,1,0) \checkmark	
0 1 0 1	

复制铰 jCasing_Piston1 三次,分别将 2 号物体修改为 Piston 2、Piston 3、Piston 4, 参数不变。

jPiston1 Rod1:选择Piston1作为铰的1号物体,Rod1为2号物体,类型为Rotational。

Joint points (0, -0.12, 0.05) 和 (0, -0.12, 0.05);

Joint Vectors (1, 0, 0) 和 (1, 0, 0)。

Name: jPiston1_Rod1 +	ti	
Body1: Body2:		
Piston 1 Rod 1	-	
Type: < Rotational	~	
Geometry Description Joint force		
Joint points		
Piston 1	12	
C -0.12 C 0.05	C	
Rod1	r,	
C -0.12 C 0.05	C	
Joint vectors		
Piston 1 axis X : (1,0,0)	~	
1 <u>n</u> 0 <u>n</u> 0	<u>n</u>	
Rod1 axis X : (1,0,0)	~ X	
1 <u>n</u> 0 <u>n</u> 0	n	Ko

复制铰 jPiston1_Rod1 三次,分别将 1 号物体修改为 Piston2、Piston3、Piston4,2 号物体对应修改为 Rod2、Rod3、Rod4,铰坐标分别如下: jPiston2_Rod2: (0,-0.04,0.05)和(0,-0.04,0.05); jPiston3_Rod3: (0,-0.04,0.05)和(0,-0.04,0.05); jPiston4_Rod4: (0,-0.12,0.05)和(0,-0.12,0.05)。

1.4 添加力元

选择 Bipolar forces 来建立气门弹簧力元。

bFRc1: 选择 Casing 作为力元的 1 号物体, Valve1 为 2 号物体, Spring 为几何图形, 类型为 Expression。

Attach points: 1 号物体连接点坐标(0.047, 0.05, 0.0435), 2 号物体连接点 坐标(0.047, 0.068, 0.0435), 自动计算出当前距离/长度为0.018(m)。

Expression: 定义力元函数表达式 F=-*cstiff*(x-0.018-0.1)-cdiss*v*, 给 *cstiff* 赋值 *2e4*(N/m), 给 *cdiss* 赋值 *100*(Ns/m), 表示弹簧初始已有 0.1m 变形, x 指的是 弹簧实际长度。

Name: bFrc1 +	
Comments/Text attribute C	
Body1: Body2:	
Casing Valve1	
GO: Spring	~
Attachment points	
Casing:	
0.047 C 0.05 C 0.0435	
R Valuati	
0.047 C 0.068 C 0.0435	C
Length 0.018	
a+b Expression	
Description of force/moment	
Pascal/C expression: F=F(x,v,t)	
Example: -cstiff*(x-x0)-cdiss*v+ampl*sin(om*t)	
F= -cstiff*(x-0.018-0.1)-cdiss*v	

复制力元 bFRc1 七次,2 号物体依次修改为 Valve2、Valve3、Valve4、Valve5、Valve6、 Valve7, Valve8. **bFRc2**的 Attach points 为(0.084, 0.05, 0.0435)和(0.084, 0.072, 0.0435),力 元表达式: -cstiff*(x-0.022-0.1)-cdiss*v; **bFRc3**的 Attach points 为(0.138, 0.05, 0.0435)和(0.138, 0.072, 0.0435),力 元表达式: -cstiff*(x-0.022-0.1)-cdiss*v; **bFRc4**的 Attach points 为(0.174, 0.05, 0.0435)和(0.174, 0.072, 0.0435),力 元表达式: -cstiff*(x-0.022-0.1)-cdiss*v; **bFRc5**的 Attach points 为(0.225, 0.05, 0.0435)和(0.225, 0.072, 0.0435),力 元表达式: -cstiff*(x-0.022-0.1)-cdiss*v; **bFRc6**的 Attach points 为(0.262, 0.05, 0.0435)和(0.262, 0.072, 0.0435),力 元表达式: -cstiff*(x-0.022-0.1)-cdiss*v; **bFRc7**的 Attach points 为(0.315, 0.05, 0.0435)和(0.315, 0.069, 0.0435),力 元表达式: -cstiff*(x-0.019-0.1)-cdiss*v; **bFRc8**的 Attach points 为(0.352, 0.05, 0.0435)和(0.352, 0.072, 0.0435),力 元表达式: -cstiff*(x-0.022-0.1)-cdiss*v;

选择 Special forces 来建立凸轮力元。

sFrc1:选择类型 Cam, Camshaft 为力元的 1 号物体, Valve1 为 2 号物体。

Attach points: 1 号物体连接点坐标(0.047, 0.0989, 0.0415), 2 号物体连接 点坐标(0.047, 0.081, 0.043)。

Cam:选择 Set separately,法向为(1,0,0),Rotation为0(°),点击 Profile 一栏的 ☑图标,按下图定义凸轮外形(注意各段曲线的拟合方式),保持

Unilateral contact 为勾选状态。

Cam profile						-	- 🗆	×
	!	+ +	📋 Line	2	~	- 8	Ê	Ÿ.
- m		N	x	Y	Туре		Smooth	ning
		⊡ · Cur						
0.01		- 1	0.0002	-0.0138	Line		Yes	
0.01		2	-0.0006	0.0134	Circle		Yes	
	X I	3	-0.0132	0.0144	Line Cubic coli		Yes	
		5	-0.0165	0.0145	Cubic spli	ne	Yes	
	m	- 6	-0.0147	0	Line		Yes	
-0.02 -0.01 0	0.01	7	0.0002	-0.0138	Circle		Yes	
0.01 Name: sF Comments Body 1:	rc1 /Text attribute C	Body2:		+ 🕩	Ü	OK		Cancel
Type:	Cam				~			
Attachmen	t points							
The count	-A.							
-3 Callsi			C 0 041	c	С			
0.047	0.0969		0.041	5				
· 사장 Valves	L:							
0.047	0.081		0.043		C			
Cam pi								
	ston							
Profile								
Normal:	axis X : (1,0,0)				\sim			
1	n o		<u>n</u> 0		n			
Rotation:	0.0000000000000000000000000000000000000				1			
Profile:	Number of points: 7							

Piston:选择 Plane 类型,定义动摩擦系数 *f* (赋值 0.25),静摩擦系数 *f* (赋值 0.3),接触刚度 *c* (赋值 *le*7),阻尼系数 *d* (赋值 *le*4),法向为 (0, 1, 0)接触模式为 Sliding。

复制凸轮力元 sFrc1 七次,将 2 号物体分别修改为 Valve2、Valve3、Valve4、

Valve5、Valve6、Valve7、Valve8。

sFrc2 的连接点坐标为(0.0824, 0.0989, 0.0415)和(0.0824, 0.0837, 0.043),

凸轮外形的 Rotation 值设置为-107(°);

sFrc3的连接点坐标为(0.137, 0.0989, 0.0415)和(0.137, 0.0842, 0.043), 凸 轮外形的 Rotation 值设置为-17(°);

sFrc4 的连接点坐标为(0.174, 0.0989, 0.0415)和(0.174, 0.084, 0.043), 凸轮 外形的 Rotation 值设置为 85(°);

sFrc5的连接点坐标为(0.225, 0.0989, 0.0415)和(0.225, 0.084, 0.043),凸轮 外形的 Rotation 值设置为-90(°);

sFrc6的连接点坐标为(0.263, 0.0989, 0.0415)和(0.263, 0.0842, 0.043), 凸 轮外形的 Rotation 值设置为 158(°);

sFrc7的连接点坐标为(0.315, 0.0989, 0.0415)和(0.315, 0.081, 0.043),凸轮 外形的 Rotation 值设置为 73(°);

sFrc8 的连接点坐标为(0.352, 0.0989, 0.0415)和(0.352, 0.084, 0.043), 凸轮 外形的 Rotation 值设置为 180(°);

17

建模完成,保存模型。