

UM培训教程

Computational Mechanics Ltd. 四川同算科技有限公司

首版: 2017年11月

修订: 2020年05月

Euromech Colloquium, 2008, Bryansk, Russia

UM Workshop, 2018, Bryansk, Russia

UM User Meeting, 2018, Pengshan, China

UM User Meeting, 2018, Pengshan, China

1.		认识 UM 软件	1 -
	1.1	软件简介	1 -
	1.2	模块与功能	5 -
	1.3	学前准备工作	9 -
2.		多体系统动力学建模与仿真	10 -
	2.1	实例一:万向地球仪	10 -
		2.1.1 建模	11 -
		2.1.1.1 新建模型	11 -
		2.1.1.2 底座建模	13 -
		2.1.1.3 支架建模	18 -
		2.1.1.4 球体建模	24 -
		2.1.2 仿真	30 -
		2.1.2.1 进入仿真程序	30 -
		2.1.2.2 设置求解参数	31 -
		2.1.2.3 设置初始条件	32 -
		2.1.2.4 执行仿真计算	33 -
		2.1.2.5 修改初始条件	34 -
		2.1.2.6 再次进行仿真	35 -
		2.1.2.7 卸载当前模型	35 -
	2.2	实例二:四连杆机构	36 -
		2.2.1 建模	37 -
		2.2.2 仿真	45 -
	2.3	实例三:椭圆规机构	49 -
		2.3.1 建模	50 -
		2.3.2 仿真	56 -
	2.4	实例四:刚柔耦合系统	61 -
		2.4.1 准备柔性体	62 -
		2.4.2 刚柔耦合系统建模	66 -
		2.4.3 动力学仿真	73 -
	2.5	实例五:自动控制系统	80 -
		2.5.1 机械系统建模	81 -
		2.5.2 控制系统建模	84 -
		2.5.3 动力学仿真	87 -
3.		轨道交通系统动力学建模与仿真	93 -
	3.1	铁路交通	93 -
		3.1.1 多刚体车辆动力学建模	94 -
		3.1.1.1 刚体与铰	94 -
		3.1.1.2 一系悬挂	98 -
		3.1.1.3 二系悬挂	102 -
		3.1.1.4 整车装配	107 -
		3.1.2 多刚体车辆动力学仿真	110 -
		3.1.3 构建刚柔耦合车辆系统	118 -

目 录

3.2	单轨交	通	122 -
	3.2.1 跨	座式单轨车辆动力学建模	123 -
	3.2.1.1	刚体与铰	123 -
	3.2.1.2	悬挂力元	129 -
	3.2.1.3	整车装配	135 -
	3.2.2 跨	座式单轨车辆动力学仿真	139 -
3.3	磁浮交	通	149 -
	3.3.1 高	速磁浮车辆动力学建模	150 -
	3.3.1.1	刚体与铰	150 -
	3.3.1.2	悬挂力元	154 -
	3.3.1.3	加速度传感器	159 -
	3.3.1.4	磁浮力元	162 -
	3.3.1.5	整车装配	164 -
	3.3.2 高	速磁浮车辆动力学仿真	168 -

1. 认识 UM 软件

1.1 软件简介

Universal Mechanism,简称 UM,是一款来自俄罗斯的大型通用多体系统动力学仿真分析软件,既能模拟多刚体系统,又能模拟多柔体(刚柔耦合/混合)系统。UM 软件提供了一系列用于机械、铁路、单轨、磁浮、汽车、履带车、油气钻井、航空航天、核工业和机器人等行业的专业模块和工具。

UM 软件的创始人是俄罗斯数学家、物理学家和计算科学家德米特里·波戈 列洛夫教授(Prof. Dmitry Pogorelov)。他于 1979 年从莫斯科大学数学力学系毕 业,获得理论力学博士学位,其导师是俄罗斯科学院院士、国际宇航科学院院士、 洪堡奖金获得者 Vladimir Beletskiy 教授(1930-2017)。他曾在德国斯图加特大学 访学多年,回俄后在布良斯克国立技术大学(Bryansk State Technical University, 又译作布良斯克国立理工大学、布良斯克国立工程工艺大学)任教至今,主持创 建了计算力学实验室(<u>www.universalmechanism.com</u>, <u>www.umlab.ru</u>),并任 首席科学家。

UM 软件发展历程:

1985年,经德国斯图加特大学 Verner Schiehlen 教授建议,启动开发计划;

1989年,发布第一个版本 (DOS 系统),用于一般多刚体系统动力学计算;

- 1991年,增加子系统功能,并开始研发铁路车辆模块;
- 1993年,发布铁路车辆模块;
- 1998年,开始用于 Windows 系统;
- 2003年,发布多变量计算模块和并行计算模块;
- 2004年,开始研发履带车辆模块;
- 2005年,发布一维列车纵向动力学模块和平面散体模块;

2006 年,发布三维列车动力学模块、汽车模块、轮轨磨耗模块、履带车辆 模块和控制模块;

- 2009年,发布三维自动接触模块;
- 2012年,发布铁路车桥耦合模块(VBI);
- 2013年,发布滚动接触疲劳模块和单轨列车模块;
- 2015年,发布传动系模块,用于汽车和履带车;
- 2016年,发布铁路柔性轨道模块(FRT),首次完全集成 CONTACT;
- 2017年,发布柔性轮对、磁浮列车模块,柔性轨道拓展到单轨和磁浮;
- 2018年,单轨列车和磁浮列车支持车桥耦合(外部导入FEM);
- 2019年,全新的车轮磨耗及滚动接触疲劳分析工具;

2020年,全新的图形内核、钢轨磨耗工具、场景模块、气动模块;

图 1-1 UM 软件开发核心团队

图 1-2 计算力学实验室

РОССИЙСКАЯ ФЕДЕРАЦИЯ

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (POCILATEHT)

СВИДЕТЕЛЬСТВО

Об официальной регистрации программы для ЭВМ

№ 2001611072

На основании Закона Российской Федерации "О правовой охране программ для электронных вычислительных машин и баз данных", введенного в действие 20 октября 1992 года. Российским агентством по патентам и товарным знакам выдано настоящее свидетельство об официальной регистрации программы для ЭВМ

Универсальный механизм (УМ)

Правообладатель(ли):

Погорелов Дмитрий Юрьевий (RU)

Автор(ы):

Погорелов Дмитрий 90роевий (RU)

Страна: Российская Федерация по заявке № 2001610377, дата поступления: 29 марта 2001 г.

> Зарегистрировано в Реестре программ для ЭВМ г. Москва, 22 августа 2001 г.

Теперальный директор 5 А.Д. Корчания Magne

图 1-3 UM 软件著作权登记证书

图 1-4 UM Input 建模界面

图 1-5 UM Simulation 仿真界面

1.2 模块与功能

UM 现有模块列表及功能简介见表 1-1。

表 1-1 UM 模块列表

模	模块名称			
块		功能简介	前置模块	
编	主模块/独立子模块/附加工具	为他间升	(编号)	
号				
		基础模块:基本的前处理建模(几何、		
		刚体、铰和力元)、仿真计算(时域		
	UM Base	和频域)以及后处理(曲线滤波、曲	必选	
		线运算、统计分析、FFT 变换、结果		
		输出、动画录制)。		
		控制面板:计算过程中手动控制某些		
1	1.1 Control panel	参数变化 (实时交互模拟器), 多用	1	
		于机器人操控仿真。		
		训练场地:履带车辆专用,场地模型		
	1.2 Training ground	为外部 CAD 导入的三维地形,可模	1、4	
		拟与履带板的接触。		
	14	基于 Sperling 指标的平稳性评估工		
	1.3 Ride comfort	具和 UIC513 标准的舒适度评估工	1	
		具。		
		子系统模块:履带车辆、铁道车辆、		
		公路车辆、单轨车辆、磁浮车辆、列		
2	UM Subsystems	车、刚柔耦合、柔性轨道、柔性轮对	1	
		等都需要用子系统技术,支持子系统		
		多层嵌套,复制,调用等。		
		公路车辆模块:包含多种"轮胎-路		
3	UM Automotive	面"接触模型和驱动模型,公路线路	2	
		工具、路面不平度工具,可进行多种		
		一 <u></u> 开坏、闭坏工况仿真。		
		腹带车辆模块:参数化的履带子系统		
4	UM Tracked Vehicle	包含主动轮、负重轮、诱导轮和托带	2	
		一轮,以及各种类型的腹带板等结构, 一,进行名针出来的合本。		
		可进行多种地形的伤具。 ————————————————————————————————————		
		[传动系幌状: 包含一系列用于铁道牛 标 发在开始地方标件 计系统建进		
		一 洲、八牛及甲扒牛洲传动系统建模的 去田工具 加 行目生於 羊动生於		
5	UM Driveline	□ ▽川上共, 糾: 1] 生凶牝、左砌囚牝、 加械扶动扶挽盟 流力理人兜 流力	1	
U		你你我的我你会。"我们称言番、他们		
		文 元 奋、		
		们与。		

	UM Loco	机车车辆模块: 支持机车、客车、 货车、地铁、动车、低地板等各种铁 道车辆的建模和动力学仿真,既支持 单车模型,也支持多车编组模型,可 进行真实线路/滚动台、轨道不平顺 和轮轨接触状态下的仿真计算,支持 变速和匀速计算,可模拟车轮圆周不 圆(扁疤、椭圆、谐波和实测不圆), 可设置变截面钢轨。	2
	6.1 External DLLs for creep force calculation	自定义蠕滑力程序接口:支持 Delphi 和 C++	6
6	6.2 Non-elliptical wheel/rail contact model	轮轨非赫兹接触模型(一点或两点接触)	6
	6.3 Multipoint non-elliptical wheel/rail contact model	Kik-Piotrowski 轮轨多点非赫兹接触 模型	6
	6.4 CONTACT add-on interface (UM)	UM 为调用 CONTACT 程序而定制的用户界面	CONTACT
	6.5 Flexible Wheelset	柔性轮对:支持从有限元软件导入弹 性轮对,并与 UM 里的钢轨模型进 行耦合计算。	6、11
	6.6 Wheel Profile Wear Evolution	基于轮轨多点接触算法的车轮型面 磨耗工具	6.3/6.4
	6.7 Rail Profile Wear Evolution	基于轮轨多点接触算法的钢轨型面 磨耗工具	6.3/6.4、9
7	UM Monorail Train	胶轮单轨列车模块:专业的橡胶轮胎 式单轨交通动力学仿真计算工具,所 有的轮胎(走行轮、导向轮和稳定轮) 均考虑各向非线性力学特性,为该领 域唯一成熟的商用程序。支持跨座式 和悬挂式,支持单车和多车编组建模 与仿真。提供刚性和柔性(铁木辛柯 梁)轨道梁模型。	2
8	UM Maglev	磁浮车辆模块:自带多种磁浮控制模型,也可与 Matlab/Simulink 联合仿 真;提供刚性和柔性(铁木辛柯梁) 轨道梁模型;可添加橡胶轮胎(需要 模块3或7)。	2
9	UM Experiments	多变量批处理计算模块	1
10	UM Cluster	分布式并行计算模块	9

		刚柔耦合模块: 支持从 ANSYS、			
		MSC.NASTRAN 和 NX NASTRAN、			
	UM FEM	ABAQUS 等有限元软件导入普通弹	2		
		性体进行刚柔耦合建模和仿真。			
		铁路专用的车桥耦合工具:支持从有			
	11.1 Vehicle-Bridge Interaction	限元软件导入弹性桥梁进行车桥耦	6、11		
11		合振动仿真。			
		单轨专用的车桥耦合工具:支持从有			
	11.2 Monorail Track	限元软件导入弹性轨道梁进行车轨	7、11		
		耦合振动仿真。			
		磁浮专用的车桥耦合工具:支持从有			
	11.3 Maglev Track	限元软件导入弹性轨道梁进行车轨	8、11		
		耦合振动仿真。			
		控制模块:自动控制、机电耦合、流			
	UM Control	固耦合等。以下四个为相互独立的子			
		程序。			
		自定义控制程序(用户使用其他程序			
	12.1 User-defined routines	编写的控制系统,编译为 DLL 文	1		
		件)。			
12		导入编译后的 Matlab/Simulink 控制			
	12.2 Matlab Import	程序,在 UM 环境进行联合仿真。	1		
		导出 UM 动力学模型,在			
	12.3 CoSimulation	Matlab/Simulink 环境中进行联合仿	1、20		
		真。			
	12 4 PlockEditor	UM 自带的控制系统编辑器(无需编	1		
	12.4 DIOCKEDITO	译 DLL)。	I		
		三维 CAD 接口模块:支持 3DS、			
13	LINA CAD Interfaces	STL、UCF 等中间格式文件,支持	1		
	OW CAD Interfaces	Inventor, Solidworks, KOMPAS-3D,	I		
		UG、ProE 等三维 CAD 软件。			
		一维列车模块:每个车为质点模型,			
		车间用非线性钩缓力元连接,考虑基			
14	UM Train	本阻力、曲线阻力、坡度阻力等,进	2		
	, , , , , , , , , , , , , , , , , , ,	行长大编组列车的纵向动力学模拟			
		(牵引、制动和缓解)。			
15		三维列车模块:支持在一维列车模型			
	UM Train 3D	中加入若干节三维机车车辆模型进	6、14		
		行耦合仿真,其中三维车辆的计算考	<u>.</u>		
		虑完整的轮轨关系。			
		散体模块:指定散体(二维)的基本			
16	UM Ballast	尺寸和形状,自动生成一定数量的散	2		
		体,添加不同形状的容器和机构,与			

		散体进行接触仿真,可与其他三维模 型(加货车)联合仿真	
17	UM RCF	车轮滚动接触疲劳模块:基于轮轨磨 耗仿真的结果,进行车轮滚动疲劳分 析。	6.6
18	UM Durability	疲劳耐久性分析模块:基于刚柔耦合 仿真的结果,提取各节点应力应变时 程,使用雨流计数法统计载荷循环次 数,结合材料 S-N 曲线进行构件疲 劳寿命预测。	11
19	UM 3D Contact	三维自动接触模块:多面体间的自动 接触定义和仿真,无需手动建点建 面。	1
20	UM COM Server	COM 服务器:输出动力学内核供其 他程序使用	1
21	UM Flexible Railway Track	柔性轨道模块:包含参数化的钢轨 (3D 铁木辛柯梁)、轨枕(刚体或 2D 欧拉梁)和扣件(线性或非线性 力元)模型,支持导入轨下基础(弹 性体),进行大系统耦合仿真。	6.3、11
22	UM Scene	三维场景模块:包含路面、交通标志、 车辆、建筑物、树木等素材。	1

1.3 学前准备工作

- 加入UM用户QQ交流群: 262743795,在群文件里下载最新版软件、 附加例子、功能演示文稿(PPT)等资料,如下载不成功,可联系管理 员单独发送。
- 关注微信公众号:同算科技,及时获取 UM 软件动态,通过关键词自动 获得常见问题的详细解答。

- 在 Windows 7/8/10 系统上安装 UM 软件,自 8.3.3.4 起,UM 只发布 64 位版本,不再提供 32 位版本程序。 (向微信公众号发送消息:安装或 000,可<u>查看安装方法</u>)。
- 4) 首次安装 UM 软件一个月之内无需 license, 到期后可以发送电子邮件至 UM License 管理邮箱: registration@universalmechanism.com 申请试用。
 (向微信公众号发送消息: license 或 001, 可查看申请方法)。
- 5) 使用过程中有任何问题可发送电子邮件(如果是具体模型的问题,请将 整个模型文件夹及其调用的文件一起打包)至邮箱: <u>tongsuan@qq.com</u>。
- 6) 在学习建模之前,请务必先从 QQ 群的 UM 学习资料文件夹里下载"UM 培训教程.rar",并解压到本地计算机的 D 盘(本教程里模型的缺省路 径为"D:\UM 培训教程")或其他位置,这里包含了本套教程的全部模型及素材。若无法下载或文件损坏,请私信管理员。
- 7) 本教程使用 UM 8.5.8.8 版本, UM 各个版本的界面和基本操作差异不大, 仅在个别地方略有不同。
- 本教程循序渐进,分析的模型从简单到复杂,对基本操作的讲解从详细 到简略,请读者务必顺序阅读,夯实基础。
- 9) 本教程旨在引导用户快速入门,熟悉 UM 软件建模和仿真的基本方法和 流程,具体的数学和力学知识及计算原理请仔细阅读相关章节的帮助文 档以及专业教科书。
- 10) 本教程中所有模型的参数系自编,并不对应实际的物理原型,不可直接 用于科学和工程研究。
- 11) 此外, UM 软件自带了很多例子, 值得学习借鉴, 建议读者一一浏览。

2. 多体系统动力学建模与仿真

2.1 实例一: 万向地球仪

图 2-1 地球仪模型

图 2-1 所示为一个常见的地球仪模型,该模型由三个刚体(底座、支架、球体)组成。惯性参考系原点位于**球体**几何中心,红色为X轴,绿色为Y轴,蓝色为Z轴。其中底座固定在地面,没有自由度,**支架**具有绕底座X轴转动的自由度,**球体**具有绕**支架**Z轴转动的自由度,因此系统共有两个自由度。

本例用到的模块: UM Base。

2.1.1 建模

2.1.1.1 新建模型

 选择开始菜单 → 所有程序 → Universal Mechanism 8.5 → UM Input, 运行 UM Input 建模程序(或双击桌面快捷方式 UM Input 图标),出 现如图 2-2 所示界面,这是 UM Input 程序的主菜单和常用工具栏。

🕑 UM - Object data input	_	×
File Edit Object Add Tools Help		

图 2-2

2)选择主菜单 File → New object,新建一个 UM 模型,缺省名称为 UmObj0。 这时出现 UM Input 建模主窗口,左侧上部是模型树(层次结构),下部 是参数表(参数化建模),右侧为交互界面(输入和修改模型数据),中 间为动画窗口(显示三维模型),如图 2-3 所示。左侧模型树选中的对 象决定了动画窗口和交互界面显示的内容,当前模型没有任何对象,因 此只显示了总体坐标系(惯性参考系,Base0 坐标系),辅助网格缺省位 于 X-Y 平面。

图 2-3

3) 动画窗口顶部有一个工具栏,用于视图操作,可进行缩放、平移和转动, 请读者尝试每个按钮的功能。用鼠标和键盘也可直接调整视图:按下左 键并移动鼠标为转动操作,同时按下左键和 CTRL 键并移动鼠标为平移

5)

操作,滑动鼠标滚轮或同时按下左键和 SHIFT 键并移动鼠标为缩放操作。

4)选择主菜单 File → Save as...,将模型另存为,在弹出窗口删除缺省路径, 直接输入包含模型名称(万向地球仪)的模型路径 "D:\UM 培训教程\
我的 UM 模型\万向地球仪",当然也可通过按钮 → 选择其他路径,如
图 2-4。

	Save as						
	Path (including object name):						
	D:\UM培训教程\我的UM模型\万向地球仪 🧾 ▼						
	Save Cancel						
	图 2-4						
点击按钮 S	ave → 是(Y),确定在当前目录创建一个 UM 模型。						
Confirmat							
?	Create new directory D:\UM培训教程\我的UM模型\万向地球仪?						
	是(Y) 否(N)						
	图 2-5						

6) 这样,我们就创建了一个名为"万向地球仪"的模型,模型对应一个文件夹,文件夹名称即为UM的模型名称,文件夹里有"input.dat"和 "object.bmp"两个文件,如图 2-6 所示,前者是模型的动力学描述文件(用于计算),后者是模型缩略图(用于预览)。

图 2-6

2.1.1.2 底座建模

1) 选择主菜单 Edit → Read from file, 定位到路径 "D:\UM 培训教程\几何 素材\万向地球仪",选中底座.img,点击按钮打开。

Read element	X
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	▼ 4 搜索 万向地球仪 ♀
组织 ▼ 新建文件夹	ii - 🗌 🔞
▲ 名称 [▲]	
■ 康座.img ■ 球体.img ■ 支架.img	
	没有预览。
文件名(N): 底座.img	•
	打开(0) 取消
图 2-7	

2) 这样,我们就导入了地球仪底座的几何图形(Images),如图 2-8 所示。 导入几何图形的目的是增强模型可视化效果,它并不参与动力学计算。

图 2-8

3) 选中左侧模型树中的 Bodies, 然后在右侧交互界面点击按钮+, 如图 2-9。

图 2-9

4) 这样,我们就创建了一个刚体,系统自动命名为 Body1。在交互界面 Parameters 页面 Image 处的下拉菜单中选择底座,并保持 Visible 选项 为勾选状态,如图 2-10。

5) 在交互界面顶部 Name 处将该刚体重名为底座,在 Parameters 页面下 部 Mass 处定义质量(国际单位: kg)为1,在 Inertia tensor 处定义刚 体相对其惯性主轴的转动惯量(国际单位: kg•m²)分别为1,1,1, 如图 2-11。

备注:每次输入参数或修改参数后,请敲一下回车键。

图 2-11

6) 选中左侧模型树中的 Joints, 然后在右侧交互界面点击按钮+, 如图

2-12。

图 2-12

这样,我们就创建了一个铰,系统自动命名为 Joint1,如图 2-13。 7)

图 2-13

8) 然后从 Body1 下拉菜单选择 Base0,从 Body2 下拉菜单选择底座,系统 会自动将该铰重命名为 jBase0_底座, 如图 2-14。

9) 从 Type 下拉菜单中选择 6 d.o.f., 然后在 Coordinates 页面取消勾选三 个平动和三个转动自由度选项(缺省全部为勾选状态), 如图 2-15。

10) 选择菜单 File \rightarrow Save, 保存模型。

通过以上操作,我们就完成了底座的建模:

- ✔ 准备几何图形
- ✔ 把几何赋给刚体
- ✔ 定义刚体的属性
- ✔ 描述刚体的运动

2.1.1.3 支架建模

1) 选择主菜单 Edit → Read from file, 定位到路径"D:\UM 培训教程\几何 素材\万向地球仪",选中支架.img,点击打开。

Read element	×
○○○ 🖟 《 DATA (D:) → UM培训教程 → 几何素材 → 万向地球仪	 ✓ ✓
组织 ▼ 新建文件夹	i - 🔁 🔞
▲ 名称 ▲ 展座.img ● 球体.img ● 球体.img ● 支架.img	没有预览。
↓ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	
	11卅(O)
图 2-16	

2) 这样,我们就导入了地球仪支架的几何图形(Images),如图 2-17 所示。 导入几何图形的目的是增强模型可视化效果,它并不参与动力学计算。

图 2-17

3)选中左侧模型树中的 Bodies,右侧交互界面默认显示刚体底座的参数,如图 2-18,然后在交互界面点击按钮+。这里也可以选中 Bodies,点右键,选择菜单 Add element to group "Bodies"。

图 2-18

4) 这样,我们就创建了第二个刚体,系统自动命名为 Body1,在交互界面 Parameters页面 Image 处的下拉菜单中选择支架,并保持 Visible 选项 为勾选状态,如图 2-19。

图 2-19

5) 在交互界面顶部 Name 处将该刚体重名为支架,在 Parameters 页面下 部 Mass 处定义质量(国际单位: kg)为1,在 Inertia tensor 处定义刚 体相对其惯性主轴的转动惯量(国际单位: kg•m²)分别为1,1,1, 如图 2-20。

备注:每次输入参数或修改参数后,请敲一下回车键。

图 2-20

6) 选中左侧模型树中的 Joints,右侧交互界面默认显示铰 jBase0_底座的
 参数,如图 2-21,然后在交互界面点击按钮+。

图 2-21

这样,我们就创建了第二个铰,系统自动命名为 Joint1,如图 2-22。 7)

图 2-22 <

8) 然后从 Body1 下拉菜单选择底座,从 Body2 下拉菜单选择支架,系统 会自动将该铰重命名为j底座_支架,如图 2-23。

图 2-23

9) 从 Type 下拉菜单中选择 Rotational,保持缺省设置。表示物体 2 支架相 对物体 1 底座具有一个转动自由度,较点位于底座的原点,转动轴是底 座的 X 轴,并且支架的原点与底座的原点重合,支架的 X 轴与底座的 X 轴平行(重合),如图 2-24。

图 2-24

10) 在 Description 页面,我们可以改变 Value 值(转动铰对应为角度),预 览支架相对底座的运动(预览后请记得归零,并敲回车键),如图 2-25。

图 2-25

其实,从第 6-9 步,也可以选中左侧模型树的 Joints,点右键,选择菜单 Add element to group "Joints" \rightarrow Rotational,然后分别选择 Body1 和 Body2 对应的物体,如图 2-26。

图 2-26

11) 选择主菜单 File → Save, 保存模型。

通过以上操作,我们就完成了支架的建模:

- ✔ 准备几何图形
- ✔ 把几何赋给刚体
- ✔ 定义刚体的属性
- ✔ 描述刚体的运动

2.1.1.4 球体建模

1) 选择主菜单 Edit → Read from file, 定位到路径"D:\UM 培训教程\几何 素材\万向地球仪",选中球体.img,点击按钮打开。

😥 Read element	X
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	
组织 ▼ 新建文件夹	!≡ - □ @
▲ 名称 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲	
■ 球体.img ■ 支架.img	
u u	没有预览。
50 E	
文件名(N): 球体.img	•
	打开(0) 取消

图 2-27

2) 这样,我们就导入了地球仪支架的几何图形(Images),如图 2-28 所示。 导入几何图形的目的是增强模型可视化效果,它并不参与动力学计算。

图 2-28

3) 选中左侧模型树中的 Bodies (其实选中任意一个刚体都行), 然后在交

互界面点击按钮 +,如图 2-29。这里也可以选中 Bodies,点右键,选 择菜单 Add element to group "Bodies"。

图 2-29

4) 这样,我们就创建了第三个刚体,系统自动命名为 Body1,在交互界面 Parameters 页面 Image 处的下拉菜单中选择球体,并保持 Visible 选项 为勾选状态,如图 2-30。

图 2-30

5) 在交互界面顶部 Name 处将该刚体重名为球体,在 Parameters 页面下 部 Mass 处定义质量(国际单位: kg)为1,在 Inertia tensor 处定义刚 体相对其惯性主轴的转动惯量(国际单位: kg•m²)分别为1,1,1, 如图 2-31。

备注:每次输入参数或修改参数后,请敲一下回车键。

图 2-31

6) 选中左侧模型树中的 Joints (其实选中任意一个较都行), 然后在交互界 面点击按钮+, 如图 2-32。

图 2-32

7) 这样,我们就创建了第三个铰,系统自动命名为 Joint1,如图 2-33。

图 2-33

8) 然后从 Body1 下拉菜单选择支架,从 Body2 下拉菜单选择球体,系统 会自动将该铰重命名为j支架_球体,从 Type 下拉菜单中选择 Rotational, 如图 2-34。

图 2-34

9) 在 Joint Vector 处对支架和球体都选择 Z 轴,表示物体 2 球体相对物体 1 支架具有一个转动自由度,铰点位于支架的原点,转动轴是支架的 Z 轴,并且球体的原点与支架的原点重合,支架的 Z 轴与底座的 Z 轴平行 (重合),如图 2-35。

图 2-35

10) 在 Description 页面,我们可以改变 Value 值(转动铰对应为角度),预 览球体相对支架的运动(预览后请记得归零,并敲回车键),如图 2-36。

图 2-36

从第 6-9 步,也可以直接在 Bodies→球体页面,点击按钮 ^{ISP},选择菜单 Create

joint → Rotational, 然后选择 Body1 对应物体支架, 再设置转动轴 Z, 如图 2-37。

Name: 球体 Comments/Text at	+ 🔩 🕀 🛍 tribute C				Name: 運球体 牛 [Body1: Body2:	
Oriented points	Vectors 3D Contact				Base0 🗾 球体	_
Parameters	Position Points				Type: < Rotational	~
Coordinates (PP):	Quaternion	<i>v</i> .			Geometry Description Joint force	
Go to element Image: 団状体 Compute autom Inertia parameters Mass: 1 Inertia tensor: 1	Visible	+ Create joint	 ↓ ↓ ↓ ↓ ↓<th>Rotational Translational 6 d.o.f. General Quaternion</th><th>Joint points Base0 正 正 正 正 正 正 正 正 正 正 正 正 正</th><th></th>	Rotational Translational 6 d.o.f. General Quaternion	Joint points Base0 正 正 正 正 正 正 正 正 正 正 正 正 正	
Added mass matrix Coordinates of cen	ter of mass				現体 axis X:(1,0,0) 1 加 0 加	0 <u>n</u>

图 2-37

11) 选择主菜单 File → Save, 保存模型。

102

通过以上操作,我们就完成了球体的建模:

- ✔ 准备几何图形
- ✔ 把几何赋给刚体
- ✔ 定义刚体的属性
- ✔ 描述刚体的运动

至此,已完成所有建模工作。

本例详细介绍了 UM 软件导入几何、创建刚体和定义铰的一般方法,后续 例子不再赘述,建议初学者反复练习多次。

2.1.2 仿真

2.1.2.1 进入仿真程序

 选择 UM Input 程序的主菜单 Object → Simulation 运行仿真程序并自 动加载当前模型(或直接点击工具栏按钮)。

🕑 UM - С	Dbject data input - 万向地球仪	_	- X
File Edit	Object Add Tools Help		
0 👄	Verify data F7	🚅 💱 💱 🐏 🕑 UMComponent Mates UMLoco Car(Wheels	
T 👬	Generate equations F8		
	Simulation Ctrl+M		

图 2-38

- 待 UM Simulation 仿真程序运行后,关闭 UM Input 程序(最好不要让 两个程序同时访问一个模型)。
- 3) 加载了模型的仿真程序界面如图 2-39 所示,上方为主菜单和常用工具 栏,下方为程序桌面。在程序桌面上自动打开了一个动画窗口,显示当 前模型,可随意调整大小和位置,可关闭也可同时打开多个动画窗口。 动画窗口的视图操作与建模窗口方法一样。

图 2-39

2.1.2.2 设置求解参数

 选择主菜单 Analysis → Simulation, 弹出仿真控制面板, 如图 2-40。(或 直接点击工具栏按钮)

◎ UM - Simulation - d:\um增训数程\我的um模型\万向地球仪	- 🗆 X
File Analysis Scanning Tools Windows Help	
Simulation 19 本 요 마 표 표 호 소 양 후 등 중 중 때 표 등	✓ Speed unit

图 2-40

在 Solver 页面,默认求解器为 Park,将仿真时间 Time 设置为 100(国际单位: s)。

图 2-41

2.1.2.3 设置初始条件

 切换到 Initial conditions 页面,可以看到系统自由度数目为 2,设置第 一个自由度的速度 Velocity 为 1 (国际单位: rad/s)。
 备注:每次输入参数或修改参数后,请敲一下回车键。

Coordi	Initia nates	l con	ditions	Object	variab al conc	ditions	A	Informa	ation			
~		6				ardons						
		a	* 🕀	Θ	x=0	0 ν=0	V V					
	ŵ	4	Coordin	ate		Veloc	ity			Commer	nt	
1.1			0			1				j底座_3	支架 1a	
1.2			0			0				j支架_J	求体 1a	
•												
	sage		dx=	0.1		da=	0.1					
Mes	sage r of d.	(dx =	0.1	_ (da=	0.1	L				

图 2-42

 $\langle \langle \rangle$

2.1.2.4 执行仿真计算

1) 点击按钮 Integration,执行仿真,在动画窗口可以看到球体随支架一起 绕底座 X 轴旋转运动,如图 2-43。

图 2-43

2) 计算完毕后,会自动弹出 Simulation over 提示;若要中途停止仿真,可 点击进度条的按钮 或按 ESC 键。

Process parameters	Solver statistics	
Type of coord	inates for bodies	PP: Options
Simulation proc	ess parameters	Solver options
Solver	Type of solu	ition
OBDF		
O ABM	O Null space	e method (NSM)
Park		
Gear 2	Range gr	pace method (PSM)
O Park Parallel	(Range a	bace method (Roiny
Time	+	100 🗖
nine	<u> </u>	100
Step size for animat	ion and data storage	0.02
Error tolerance		1E-6
Delay to real tim	e simulation	
Keep system ma	trix decomposition	
Computation of	Jacobian	
Block-diagona	al Jacobian	

3) 在弹出界面点击按钮 Interrupt,终止仿真。

2.1.2.5 修改初始条件

现在回到 Initial conditions 界面,将第二个自由度的速度 Velocity 也设置为1(国际单位: rad/s),如图 2-44。

olver	Initia	l cor	object variable	es XVA Information	
Coordir	nates	Co	onstraints on initial condi	tions	
		(v=0 <u>\</u>	
	ψ	4	Coordinate	Velocity	Comment
1.1			0	1	j底座_支架 1 a
1.2			0	1	j支架_球体 1 a
•					
< Mes	sage		dx= 0.1 📷 da	a= 0.1 📷	

图 2-45

2) 如果不小心点击了按钮 Close 而将仿真控制面板关闭了, 重新通过主菜

单 Analysis → Simulation 或直接点击工具栏按钮①打开即可。

2.1.2.6 再次进行仿真

点击按钮 Integration,再次执行仿真,在动画窗口可以看到球体既随支架一起绕底座 X 轴旋转运动,又相对支架 Z 轴旋转运动,如图 2-46。

图 2-46

- 2) 如果不小心点击了按钮 🕺 而将动画窗口关闭了,可通过主菜单 Tools
 - → Animation Window...或工具栏按钮 重新打开。

2.1.2.7 卸载当前模型

- 1) 待计算完毕或中途暂停,在弹出页面点击按钮 Interrupt 终止仿真。
- 2) 点击仿真控制面板的 Close 按钮,将其关闭。
- 3) 选择主菜单 File → Close, 卸载当前模型。
- UM Simulation 程序仍在运行,可通过菜单 File → Open 加载其他模型, 进行仿真工作。

2.2 实例二:四连杆机构

图 2-47 所示为一个经典的四连杆机构模型,该模型由四个刚体(机架、曲柄、连杆和滑块)组成。惯性参考系原点位于机架底面,红色为 X 轴,绿色为 Y 轴,蓝色为 Z 轴。其中机架固定在地面,没有自由度,曲柄具有绕机架 Y 轴转动的自由度,连杆具有绕曲柄 Y 轴转动的自由度,滑块具有绕连杆 Y 轴转动的自由度,同时滑块又受到机架的约束只能沿着 X 轴运动,因此形成一个闭环系统,共有一个独立自由度。

本例用到的模块: UM Base。

2.2.1 建模

- 1) 运行 UM Input 程序。
- 2) 选择主菜单 File → New object, 新建一个 UM 模型。
- 3) 选择主菜单 File → Save as...,指定模型路径及名称 "D:\UM 培训教程\ 我的 UM 模型\四连杆机构"。
- 4) 选择主菜单 Edit → Read from file, 依次读入"D:\UM 培训教程\几何素 材\四连杆机构"文件夹下的机架.img、曲柄.img、连杆.img 和滑块.img 四个几何图形, 如图 2-48。

图 2-48

5) 由于机架没有自由度,所以不必要为其创建刚体,可直接将其赋给 Base0。如图 2-49,先在左侧模型树选中 Object,然后在右侧交互界面 General 页面下方 Scene image 处的下拉菜单中选择几何机架。

图 2-49

www.tongsuan.cn

6) 创建第一个刚体曲柄,从 Image 下拉菜单选择几何曲柄,设置质量(1) 和转动惯量(1,1,1)参数,如图 2-50。

图 2-50

7) 创建第二个刚体连杆,从 Image 下拉菜单选择几何连杆,设置质量(1) 和转动惯量(1,1,1)参数及质心坐标(-0.4,0,0),如图 2-51。

图 2-51

8) 创建第三个刚体**滑块**,从 Image 下拉菜单选择几何**滑块**,设置质量(1) 和转动惯量(1,1,1)参数及质心坐标(-0.4,0,0),如图 2-52。

图 2-52

9) 创建第一个铰, Body1 选择 Base0, Body2 选择曲柄, Type 选择 Rotational, Joint points 分别为(1, 0, 0.8)和(0, 0, 0), Joint vector 都选择 Y 轴, 如图 2-53。表示将曲柄的原点与总体坐标系的点(1, 0, 0.8)重合, 曲柄绕通过该点与总体坐标系 Y 轴平行的 Y'轴可以转动,并且曲柄的 Y 轴与之平行(重合)。

图 2-53

切换到 Description 页面,设置 Rotation 值为 30(°),作为初始状态。
 然后,勾选 Prescribed function of time,然后在弹出对话框点是(Y),如
 图 2-54。

图 2-54

11) 在最下方数据框输入表达式 omega*t,回车,在弹出界面点击 Accept, 这时新的参数符号 omega 会自动添加到左侧下方的参数符号列表,缺省 值为 0,t则是系统变量时间。这个表达式用来定义时间函数驱动的转动, 所有带 t 标记的数据框都可以输入显含时间的函数表达式。

12) 创建第二个铰, Body1 选择曲柄, Body2 选择连杆, Type 选择 Rotational, Joint points 分别为(-0.3, 0, 0)和(0, 0, 0), Joint vector 都选择 Y 轴,如图 2-56。表示将连杆的原点与曲柄局部坐标系的点(-0.3, 0, 0) 重合,连杆绕通过该点与曲柄局部坐标系 Y 轴平行的 Y'轴可以转动, 并且连杆的 Y 轴与之平行(重合)。

图 2-56

13) 切换到 Description 页面,将 Value 值设为-55(°),如图 2-57。表示 将连杆相对曲柄转动一定角度作为初始状态。注意对于每一个 Joint,在 局部视图模式下,显示的都是 Joint 连接的第一个物体的局部坐标系。

图 2-57

14) 创建第三个铰, Body1 选择连杆, Body2 选择滑块, Type 选择 Rotational, Joint points 分别为(-0.8, 0, 0)和(0, 0, 0), Joint vector 都选择 Y 轴, 如图 2-58。表示将滑块的原点与连杆局部坐标系的点(-0.8, 0, 0) 重合, 滑块绕通过该点与连杆局部坐标系 Y 轴平行的 Y'轴可以转动, 并且滑块的 Y 轴与之平行(重合)。

图 2-58

15) 切换到 Description 页面,将 Value 值设为 25 (度),如图 2-59。表示 将滑块相对连杆转动一定角度作为初始状态。注意对于每一个 Joint,在 局部视图模式下,显示的都是 Joint 连接的第一个物体的局部坐标系。

图 2-59

16) 创建第四个铰, Body1 选择 Base0, Body2 选择滑块, Type 选择 Translational, Joint points 分别为(0,0,0.6)和(0,0,0), Joint vector 都选择 X 轴,如图 2-60。表示将滑块的原点与总体坐标系的点(0,0, 0.6)重合,滑块沿通过该点与总体坐标系 X 轴平行的 X'轴可以平动, 并且滑块的 X 轴与之平行(重合)。

图 2-60

17) 在动画窗口点右键,选择 Mode → Object,可切换为整体模式,显示
 当前模型所有物体。也可点击动画窗口工具栏的 D 图标进行切换(●)。

图 2-61

18) 在左侧模型树中,分别点击 Images、Bodies 和 Joints 前面的一图标可以 将其中的元素折叠起来;点击 Summary,在右侧交互界面会有提示模 型是否有逻辑错误(一般的警告可以忽略),如图 2-62。

图 2-62

19) 选择主菜单 File → Save,保存模型。建议读者养成在建模过程中经常保存模型的习惯。

至此,我们完成了一个"曲柄滑块"机构(由四连杆演化而来)的建模。

2.2.2 仿真

- 选择 UM Input 程序的主菜单 Object → Simulation 运行仿真程序并自 动加载当前模型(或直接点击工具栏按钮)。
- 2) 待 UM Simulation 仿真程序运行后,关闭 UM Input 程序。
- 3) 选择主菜单 Analysis → Simulation, 弹出仿真控制面板。(或直接点击 工具栏按钮) 或按 F9 键)
- 4) 在 Solver 页面,设置求解器为 Park,仿真时间 Time 为 30 (s),数据
 步长改为 0.005 (s),勾选 Computation of Jacobian。

	Initial condition	s Object variables	XVA II	nformation
Simulation process parameter	s Solver options	Type of coordinates for bodie	es PP: Option	ns
Solver BDF BDF ABM Park Gear 2 Park Parallel Time Step size for animation and de Error tolerance Delay to real time simulatie Keep system matrix decon Computation of Jacobian	Type of solution Null space metho Range space metho Range space metho ata storage 0.005 1E-6 on nposition	d (NSM) thod (RSM) 30		
Block-diagonal Jacobia	n			

图 2-63

5) 切换到 Identifier 页面,给 omega 赋值 1 (rad/s),如图 2-64。

6) 切换到 Initial conditions 页面,可以看到有两个铰的初始坐标不为 0, 这是因为我们在建模时设置了一定的初始转角。由于系统存在闭环,因 此有一个铰会被切断,软件自动用约束方程描述,一般不需要处理。

Objec	t simu	Ilatio	on inspector					
Solver	Iden	tifier	s Initial condi	tions Ol	oject variable	S XVA	Information	1
Coord	linates	Co	onstraints on ini	tial condit	ions			
		(a	. ⊕ ⊖	x=0	ν=0 <u> </u>			
	ŵ	1	Coordinate		Velocity		Comme	nt
1.1			-0.959931088	597	0		j曲柄_	连杆 1a
1.3	×		0.4363323129	99	0		j连杆_	滑块 1a(cut)
1.2			0		0		jBase0	_ 温块 1c
	1.2 0 0 jBase0_滑块 1c Message dx= 0.1 圖 da=							
	Inte	egrat	tion		Message			Close

7) 点击 ②按钮可以通过"牛顿-拉弗逊"迭代计算出精确的初始条件。可见,这里显示系统总自由度数目为0,这是因为曲柄的运动是用时间函数描述的,那么它的运动是已知的,由此决定了系统中每一个体的运动。

Obje	Deject simulation inspector							
Solv	ver Ide	entifie	rs Initial condition	s Obj	ect variables	XVA	Information	
Coc	ordinate	s Co	onstraints on initial	conditio	ons			
Ē	₽ 🖰	6	$\Theta \oplus \Theta$	x=0	v=0 <u></u>			
	પી	; √	Coordinate		Velocity		Comment	
1.1	1		-0.976415370343	1	-0.13611575	5926	j曲柄_连杆 1a	
1.3	3 🏅	(0.452816594745		0.036115755	59257	j连杆滑块 1a(cut)	
1.2	2		0.0208176503678	3	0.027640514	4574	jBase0_滑块 1c	
•								
	Messag	e)	dx= 0.1 🗖	da=	0.1			
Nun	mber of	d.o.f.	= 0					

8) 按钮 Integration,执行仿真,在动画窗口可以看到该机构各构件的运动 情况。

图 2-67

- 9) 计算完毕后,会自动弹出 Simulation over 提示;若要中途停止仿真,可 点击进度条的按钮 或按键 ESC。然后在弹出界面点击按钮 Interrupt, 终止仿真。
- 10) 选择主菜单 Tools → Graphical window...打开一个绘图窗口(或点击 工具栏按钮,),用鼠标调整其大小和位置,如图 2-68。

- 11) 选择菜单 Tools → Wizard of variables...打开变量向导(或点击工具栏 按钮 /)。
- 12) 在变量向导左侧勾选物体**滑块**,右侧 Linear variables 页面缺省选择 Coordinate,分量 X,然后点右侧的 图标,创建变量 r:x (**滑块**),表 示滑块原点相对总体坐标系 X 轴的平动变量。

User variables	H Reactions	Coordinates	Sol	ver variables	I All forces	id Identifiers
🥩 Variables for g	group of bodies	Soint forces	🛆 Angular	variables	🗶 Linear variables	a+b Expression
 ■ 四连杆初 □ 曲柄 □ 連杆 □ 逆杆 □ 弾块 	构	Selected 滑块 Coordinates of pr 「 Type ④ Coordinate 〇 Velocity 〇 Acceleration	pint in the boo	dy-fixed frame C C	of reference 0 Bipolar vector Bipolar velocity Bipolar acceleration	0
		Component X Resolved in SC of Base0 Relative to body	⊖ Y Fbody	⊖z	0111	<u></u> ∨
		Baseu	0		0	0
r:x(滑块)	Co	ordinates of point (0	,0,0) of body	滑块 relative t	o Base0, SC Base0,	projectior 👼 🛔
:x(滑块)						

图 2-69

- 13) 将该变量选中并拖入到绘图窗口。
- 14) 点击按钮 Integration,再次进行仿真计算,绘图窗口显示结果如图 2-70。

2.3 实例三: 椭圆规机构

图 2-71 所示为一个传统的椭圆规机构模型,该模型由四个刚体(底板、横 滑标、纵滑标和旋转杆)组成。惯性参考系原点位于底板底面,红色为X轴, 绿色为Y轴,蓝色为Z轴。其中底板固定在地面,没有自由度,横滑标可沿底 板Y轴向平动,纵滑标可沿底板X轴向平动,而旋转杆相对纵、横两个滑标都 可转动。因此形成一个闭环系统,共有一个独立自由度。

本例用到的模块: UM Base。

2.3.1 建模

- 1) 运行 UM Input 程序。
- 2) 选择主菜单 File → New object, 新建一个 UM 模型。
- 3) 选择主菜单 File → Save as...,指定模型路径及名称 "D:\UM 培训教程\ 我的 UM 模型\椭圆规机构"。
- 4) 选择主菜单 Edit → Read from file, 依次读入"D:\UM 培训教程\几何素 材\椭圆规模型"文件夹下的底板.img、横滑标.img、纵滑标.img和旋转 杆.img 四个几何图形, 如图 2-72。

图 2-72

5) 由于底板没有自由度,所以不必要为其创建刚体,可直接将其赋给 Base0。 如图 2-73,先在左侧模型树选中 Object,然后在右侧交互界面 General 页面下方 Scene image 处的下拉菜单中选择几何底板。

图 2-73

6) 创建第一个刚体横滑标,从 Image 下拉菜单选择几何横滑标,设置质量
 (1)和转动惯量(1,1,1)参数,如图 2-74。

 7) 点击右侧面板上方的按钮 □,复制生成第二个刚体,重命名为纵滑标, 从 Image 下拉菜单选择几何纵滑标,如图 2-75。

图 2-75

8) 点击右侧面板上方的按钮 [□],复制生成第三个刚体,重命名为旋转杆,从Image下拉菜单选择几何旋转杆,设置质心坐标(0,2,0),如图 2-76。

🕑 椭圆规机构 _ × × 🛍 🖉 🖉 🛠 🖓 🇞 🕬 🖬 🖡 v 🛿 Object + 👆 🕂 🗊 Name: 旋转杆 - 🔅 Object Comments/Text attribute C Vectors Position 3D Contact Oriented points Parameters Points Coordinates (PP): Quaternion Go to element ¢, Bodies
 J 横滑标
 J 旗将标
 J 旋转杆 Visible Image: 旋转杆 Compute automatically Joints Joints Scalar torques Inertia parameters Mass: 1 Inertia tensor: **₽ 8 | + 8 | *** * * ***** * 1 Whole list Expression Name Value Comme Added mass matrix. (none) Coordinates of center of mass ^C 2 <

图 2-76

9) 创建第一个铰, Body1 选择 Base0, Body2 选择横滑标, Type 选择 Translational, Joint points 分别为(0, 1, 0)和(0, 0, 0), Joint vector 都选择 Y 轴,如图 2-77。表示将横滑标的原点与总体坐标系的点(0, 1, 0)重合,横滑标沿总体坐标系 Y 轴可以平动,并且横滑标的 Y 轴 与之平行(重合)。

图 2-77

10) 点击右侧面板上方的按钮 🖻,复制生成第二个铰, Body2 选择纵滑标,

Joint points 分别为(0,0,0)和(0,0,0), **Joint vector** 都选择 X 轴, 如图 2-78。表示将横滑标的原点与总体坐标系的原点重合,纵滑标沿总体坐标系 X 轴可以平动,并且纵滑标的 X 轴与之平行(重合)。

图 2-78

11) 切换到 Description 页面,勾选将 Prescribed function of time,在弹出窗口点击是(Y),然后在下方数据框里输入表达式 sin(t),回车,定义纵滑标沿 X 轴做正弦运动,幅值为1 (m)。

图 2-79

12) 创建第三个铰, Body1 选择横滑标, Body2 选择旋转杆, Type 选择 Rotational, Joint points 分别为(0,0,0)和(0,1,0), Joint vector 都选择 Z 轴,如图 2-80。表示将旋转杆的点(0,1,0)与横滑标原点 重合,旋转杆绕横滑标的 Z 轴可以转动,并且旋转杆的 Z 轴与之平行(重 合)。

13) 点击右侧交互界面上方的按钮⁴, 复制生成第四个铰, Body1 选择纵 滑标, Joint points 分别为(0,0,0)和(0,0,0),如图 2-81。表示 将旋转杆的原点与横滑标的原点重合,旋转杆绕横滑标的Z轴可以转动, 并且旋转杆的Z轴与之平行(重合)。

14) 在动画窗口点右键,选择 Mode → Object,可切换为整体模式,显示

当前模型所有物体。也可点击中间窗口工具栏的 ▶ 图标进行切换(●))

- 15) 在左侧模型树中,分别点击 Images、Bodies 和 Joints 前面的一图标可以 将其中的元素折叠起来;点击 Summary,在右侧交互界面会有提示模 型是否有逻辑错误(一般的警告可以忽略)。
- 16) 选择主菜单 File → Save,保存模型,然后关闭 UM Input 程序。建议读 者养成在建模过程中经常保存模型的习惯。

至此,我们完成了一个椭圆规机构的建模。

2.3.2 仿真

- 1) 运行 UM Simulation 仿真程序。
- 选择主菜单 File → Open..., 弹出文件浏览器, 然后定位到路径 "D: \UM 培训模型\我的 UM 模型", 这时可以看到该路径下有三个模型, 鼠标选中任意一个, 可以预览模型。选中椭圆规模型, 点击 OK。

图 2-83

- 3) 拖动鼠标自由调整动画窗口的大小和位置(一般不要最大化)。
- 4) 选择主菜单 Analysis → Simulation, 弹出仿真控制面板(或直接点击工具栏按钮)。
- 5) 在 Solver 页面, 默认求解器为 Park, 将仿真时间 Time 设置为 20 (s), 如图 2-84。
- 6) 选择菜单 Tools → Wizard of variables...打开变量向导(或点击工具栏 按钮 / 1=)。
- 7) 在变量向导左侧勾选物体旋转杆,右侧输入局部坐标(0,4,0),选择 Coordinate,分量 V,然后点右侧的 ◎图标,创建变量 r:v(旋转杆), 表示旋转杆局部坐标系中的点(0,4,0)在总体坐标系中的运动轨迹, 如图 2-85。

Simulation process paramet	ters Solver options	Evpe of coordinat	tes for bodies	PP: Ontions		
Solver	Type of solution	Type of coordinat	tes for boules	TT: Opdons		
O BDF O ABM	Null space method	d (NSM)				
 Park Gear 2 Park Parallel 	Range space met	hod (RSM)				
Time	t > ~ 2	20 💼				
Step size for animation and	data storage 0.02					
Error tolerance	1E-6					
Keep system matrix dec Computation of Jacobia Block-diagonal Jacob	iomposition n bian					
Integration		Message			Close	
웹 Wizard of variables		2-84		O Starvers	u	
Wizard of variables a+b Expression User ジ Variables for group of 一 画 新恩規机构	variables 👫 Rea f bodies 🔍 1 Selected	2-84	Coordinates	 Solver varia ar variables 	bles III ∦″ Linear v	All force ariables
월 Wizard of variables ■-b Expression User ジ Variables for group of ■ 新聞規机构 □ 横滑标 □ 週週本	variables (計 Rea Fbodies 风) Selected 旋转杆	2-84	Coordinates	 Solver varia ar variables 	bles I Linear v	All force ariables
Wizard of variables ■ b Expression User ジ Variables for group of ■ 補恩規机构 □ 横骨标 □ 纵滑标 ─ ─ ↓沿标	variables 符 Rea f bodies 风 J Selected 旋转杆 Coordinates of	2-84	Coordinates	 Solver varia ar variables eference 	ibles Linear v	All force ariables
Wizard of variables ■+b Expression User ジ Variables for group of ● ■ 補恩規机构 ● ↓ 橫滑标 ● ↓ 纵滑标 ● ♡ 旋转杆	variables 舒* Rea fbodies 余 J Selected 旋转杆 Coordinates of	2-84 actions 1 loint forces	Coordinates	Solver varia ar variables eference 4	bles 📑 d Linear v	All force ariables
Wizard of variables ■+b Expression User ジ Variables for group of 一 ■ 新恩規机构 一 横滑标 — ① 纵滑标 — ② 旋转杆	variables 計 Rea fbodies 全 如 Selected 旋转杆 Coordinates of	2-84	Coordinates A Angula fixed frame of re	Solver varia ar variables eference 4	bles I	All force ariables
Wizard of variables a+b Expression User ジ Variables for group of 「 新岡規机构 「 備滑标 「 纵滑标 「 」 縦脊杆	variables (計 Rea Fbodies 风) Selected 施转杆 Coordinates of 可ype ④ Coordinate	2-84	Coordinates	Solver varia ar variables eference 4 Bipolar vector Bipolar vector	bles ∦_ Linear v	All force ariables
Wizard of variables ■-b Expression User ジ Variables for group of ■ 新聞現机构 □ 横滑标 □ 纵滑标 □ 旋转杆	variables (計 Rea f bodies 《 J Selected 旋转杆 Coordinates of 「Type ③ Coordinate 〇 Velocity 〇 Acceleratio	2-84	Coordinates	Solver varia ar variables eference 4 Bipolar vector Bipolar velocity Bipolar acceleration	bles II	All force ariables
Wizard of variables ▲-b Expression User ジ Variables for group of ● ■ 補恩規机构 □ 描音标 □ 纵音标 ♥ 旋转杆	variables (計 Rea fbodies	2-84 actions 1 fpoint in the body- 0	Coordinates	Solver varia ar variables eference 4 Bipolar vector Bipolar velocity Bipolar acceleration	bles ⊒	All force ariables
Wizard of variables a+b Expression User び Variables for group of ● ■ 補恩投机构 □ 横滑标 □ 以滑标 ✓ 旋转杆	variables (計 Rea fbodies 文子 Rea fbodies 文子 Selected 旋转杆 Coordinates of ① Type ④ Coordinate 〇 Velocity 〇 Acceleratiou 〇 X	E 2-84	Coordinates	Solver varia ar variables eference 4 Bipolar vector Bipolar velocity Bipolar acceleration	bles	All force ariables
Wizard of variables ■+b Expression User ジ Variables for group of ■ 新聞規机构 □ 横滑标 □ 纵滑标 ☑ 淀转杆	variables (計 Rea fbodies (本 Rea fbodies (本) Selected 施转杆 Coordinates of Coordinates of Velocity Acceleration Component X Resolved in SC	2-84 ctions point forces point in the body- 0 Y cof body	Coordinates A. Angula fixed frame of re (C (C (C (C) (C) (C) (C) (C) (Solver varia ar variables eference 4 Bipolar vector Bipolar velocity Bipolar acceleration	bles Linear v N N	All force ariables
Wizard of variables ■・b Expression User ジ Variables for group of ■ 新聞規机构 □ 横滑标 □ 纵滑标 ☑ 旋转杆	variables (計 Rea fbodies 全) 3 Selected 施转杆 Coordinates of ① Type ④ Coordinate 〇 Velocity 〇 Acceleration 〇 X Resolved in SC Base0	E 2-84	Coordinates Angula fixed frame of re	Solver varia ar variables eference 4 Bipolar vector Bipolar velocity Bipolar acceleration 0 V	bles ⊥ Linear v	All force ariables
Wizard of variables ■-b Expression User ジ Variables for group of ■ 新聞現机构 □ 横滑标 □ 纵滑标 □ 旋转杆	variables (計 Rea f bodies (梁 J Selected 旋转杆 Coordinates of ① Type ③ Coordinate 〇 Velocity 〇 Acceleratio 〇 X Resolved in SC Base0 Belative to boo	E 2-84	Coordinates A Angula fixed frame of ro	Solver varia ar variables eference 4 Bipolar vector Bipolar velocity Bipolar acceleration	ibles ⊥ Linear v ® v	All force ariables
Wizard of variables ■-b Expression User ジ Variables for group of ● ● 新聞規机构 ● □ 新聞規和标 ● □ 纵滑标 ● ♡ 旋转杆	variables (計 Rea fbodies	E 2-84	Coordinates Angula fixed frame of re	Solver varia ar variables eference 4 Bipolar vector Bipolar velocity Bipolar acceleration	bles ⊥ Linear v © V	All force ariables
Wizard of variables ■-b Expression User ジ Variables for group of ■ 補恩規机构 □ 横滑标 □ 以滑标 ☑ 泷转杆	variables (計 Rea fbodies 文子 Rea fbodies 全) Selected 施转杆 Coordinates of Coordinates of Velocity Acceleration Component O X Resolved in SC Base0 Relative to boo Base0	E 2-84	Coordinates	Solver varia ar variables eference 4 Bipolar vector Bipolar velocity Bipolar acceleration	ibles Linear v e V	All force ariables
Wizard of variables ■+b Expression User ジ Variables for group of ■ 新聞規机构 ■ 横滑标 ■ 纵滑标 ♥ 旋转杆	variables (計 Rea fbodies 全) (本) Selected 前接執杆 Coordinates of Coordinates of Velocity Acceleration Component X Resolved in SC Base0 Relative to boo Base0	2-84 ctions reliance r	Coordinates	Solver varia ar variables eference 4 Bipolar velocity Bipolar acceleration 0 V	bles	All force ariables
Wizard of variables ■-b Expression User ジ Variables for group of ● ● 新岡規机构 ● ● 補岡規和 ● ○ 横岡田和 ○ ○ 新岡規和 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Variables (計 Rea f bodies (本 1) Selected 施转杆 Coordinates of Velocity Acceleration Component X Resolved in SC Base0 Relative to boo Base0	E 2-84 actions point forces f point in the body- 0 0 0 0 0 0 0 0 0 0	Coordinates	Solver varia ar variables eference 4 Bipolar vector Bipolar velocity Bipolar acceleration 0 1 V 1 0 Base0, SC Base0, Ve	bles d Linear v e v ector	0
Wizard of variables ■ b Expression User ジ Variables for group of ● ● 新聞知机构 ● □ 新聞知机构 ● □ 新聞知れ内 ● □ ○ 新聞知れ内 ● □ ○ 新聞知れ内 ● □ ○ 新聞知知 ● □ ○ 新聞知知 ● □ ○ 新聞知れ ● □ ○ 新聞知知 ● □ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	variables (計 Rea f bodies	E 2-84 actions 1 point forces f point in the body- 0 n 0 0 0 0 0 0 0 0 0 0 0 0 0	Coordinates A Angula fixed frame of re (() で) 之 和 の は 、 和 の に 、 和 の は 、 和 の し 、 和 の し 、 和 の し 、 和 の し 、 和 の し 、 和 の し 、 和 の し 、 和 の し 、 和 の し 、 和 の し 、 和 の し 、 和 の し 、 和 の し 、 和 の し 、 和 の し 、 の 「 で の 「 で の 「 で の 「 で の 「 で の 「 で の 「 の し 、 の し 、 の し 、 の し 、 の し 、 の し 、 の 「 の し の の し の し の の し の し の し の の し の の し の し の つ し の の し し の し の し の し の し の し の し の し の し つ し の し の し し の し の し の し の し の し の し の し の し の し の し の し の し の し つ し つ し つ し つ し つ し つ し つ し つ し つ し つ し つ し つ し つ し	Solver varia ar variables eference 4 Bipolar vector Bipolar velocity Bipolar acceleration 0 1 V 1 0 Base0, SC Base0, Ve	ibles Linear v N N N N N N N N N N N N N	All force ariables
Wizard of variables ■+b Expression User ジ Variables for group of ● ■ 補固規机构 □ 横滑标 □ 纵滑标 □ 》 旋转杆 ✓ 旋转杆 V(旋转杆) V(旋转杆)	Variables 計 Rea Foodies 全口 Selected 旋转杆 Coordinates of ② Coordinate ③ Acceleration ② A Resolved in SC Base0 Relative to boo Base0	E 2-84 actions P point in the body O O O O O O O O O O O O O	Coordinates Angula fixed frame of re (((((((((((((Solver varia ar variables eference 4 Bipolar vector Bipolar velocity Bipolar acceleration	ibles Linear v N O V ector	All force ariables

图 2-85

8) 将该变量选中并拖入到动画窗口,然后关闭变量向导。

9) 点击按钮 Integration,进行仿真计算,可以看到旋转杆上标记点的运动 轨迹为一个椭圆,默认为灰色显示。

图 2-86

10) 暂停仿真,在动画窗口点右键,选择 Position of vector list → Top,这 样在动画窗口上方就显示了该变量。

- 58 -

- 11) 双击变量 **r:v(旋转杆)**,将颜色修改为比较醒目的颜色(**红色**),然后继 续仿真。
- 12) 计算完毕后,会自动弹出 Simulation over 提示,点击确定,然后在弹出 界面点击按钮 Interrupt,终止仿真。

图 2-88

13) 这里介绍一下录制仿真动画的方法:在设置好仿真参数开始计算之前,

点击动画窗口工具栏第一个按钮¹⁰⁰⁰,选择 Save animation...。

	Animation window
Vecto	tors / Trajectories
	r:v(旋转杆) - Coordinates of point (0,4,0) of body 旋转杆 relative to Base0, SC Base0, Vector
io,	͡< [<] <t< th=""></t<>
ß	Copy to clipboard
B	Save to file
	Save animation
_	
	LALA AIT

图 2-89

14) 在弹出窗口勾选 Save animation 和 Codec 下拉菜单中选择 Uncompressed 或其他选项, 然后点击 Apply。

O AVI settings	×	
Save animation		
Copy step	0.10000000	
File name	椭圆规机构	
Time scale	1.0000	
Compression		
Codec: Uncompr	essed 🗸	
	Apply Cancel	X

图 2-90

15) 点击按钮 Integration,进行仿真计算,计算过程中不要关闭动画窗口, 直到计算完毕,点击确定和 Interrupt,会自动在模型目录下生成动画文 件椭圆规模型.avi。

Process of	creating file	s "AVI"	

▶ 计算机 ▶ DATA (D:) ▶ UM培训教程 ▶ 我	的UM模型 > 椭圆规	模型 ▶	
E) 查看(V) 工具(T) 帮助(H)			
⑤ Play with MPC ▼ 刻录 新建文件夹			
名称 ^	修改日期	类型	大小
퉬 History	2017-10-13 22:22	文件夹	
🕑 input.dat	2017-10-13 22:22	Universal Mecha	6 KB
🔜 input.xv	2017-10-13 22:30	媒体文件(.xv)	1 KB
🔳 last.fin	2017-10-13 22:59	FIN 文件	1 KB
Iast.icf	2017-10-13 22:59	ICF 文件	3 KB
🔳 last.par	2017-10-13 22:59	PAR 文件	1 KB
🔜 last.xv	2017-10-13 22:59	媒体文件(.xv)	1 KB
🛃 object.bmp	2017-10-13 22:22	BMP 图像	226 KB
📷 椭圆规模型.avi	2017-10-13 22:59	AVI Video File	275 732 KB

16) 关闭 UM Simulation 仿真程序(仿真界面的动画窗口不必关,否则下次 打开时需要重新配置)。

2.4 实例四: 刚柔耦合系统

图 2-93 所示为一个典型的刚柔耦合系统,该模型由三个刚体(支座、刚体A、刚体B和柔性梁)组成。惯性参考系原点位于柔性梁中性层一端,红色为X轴,绿色为Y轴,蓝色为Z轴。其中支座固定在地面,仅作示意,没有自由度,刚体A和刚体B都具有沿总体坐标系Z轴向平动的自由度,柔性梁与支座铰接,刚体A与柔性梁通过两个弹簧阻尼器连接,刚体B和刚体A也通过两个弹簧阻尼器连接。

本例用到的模块: UM Base、UM FEM。

2.4.1 准备柔性体

- 运行 UM Input 程序,新建一个 UM 模型, 另存为 "D:\UM 培训教程\ 我的 UM 模型\刚柔耦合系统"。
- 2) 复制"D:\UM 培训教程\FEM 素材"下的文件夹 Beam 到"D:\UM 培训 教程\我的 UM 模型\刚柔耦合系统"。Beam 文件夹里包含一个 UM 柔性 体素材文件 input.fum,该文件可以由 ANSYS、ABAQUS 或其他有限 元软件得到。请读者关注微信公众号"同算科技",发送消息"030"或 "031",可查看从 ANSYS 或 ABAQUS 导入模型到 UM 的基本方法和 流程,这里不再赘述。

备注: ANSYS-UM 接口可直接生成最终文件 input.fss, 而 ABAQUS-UM 接口目前只能生成中间文件 input.fum。

图 2-94

3)选择菜单 Tools → Wizard of flexible subsystem,打开柔性体子系统向导。

图 2-95

在图 2-95 界面右侧点击按钮...,在文件浏览器中定位到路径"D:\UM 4)

培训教程\我的 UM 模型\刚柔耦合系统\Beam",选中 input.fum,点击 **OK**°

Read FEM model of object	\times
Scan the forder:	
D:\UM培训教程\我的UM模型\刚柔耦合系统	<u> i i i i i i i i i i i i i i i i i i i</u>
▶ - → D:\UM培训教程\我的UM模型\刚柔耦合系统 ▶ → → Beam Data imported from program: Name of solution: FEM 12.04.2017,23:04:13, FEM Nodes: 369 Finite elements: 162 Degrees of freedom: 2214 Normal modes: 20 Static modes: 12 Computation with lumped mas Min. natural frequency: 5.36 Max. natural frequency: 280.8 Generalized mass matrix: prese Generalized stiffness matrix: prese Generalized stiffness matrix: prese D:\UMtainj教程\我的UM模型\刚柔耦合系统\Beam\input.fum	ansys
OK Cancel	~

5) 加载 Beam 模型后,这里我们可以在 General 页面看到模型的路径、有 限元软件及版本、单元和节点数目等信息。

图 2-97

6) 切换到 Solution 页面,可以看到在有限元软件里计算得到的 20 阶固有 模态和 12 阶静模态(2*6),选中某一阶模态,点击 Animate 可以预览 振型。

7) 勾选 Save to the same directory, 勾选 Exclude rigid body modes, 设置 截止频率 0.3 Hz, 点击按钮 Transform, 进行模态正则化。

图 2-99

图 2-102

- 65 -

11) 关闭柔性体子系统向导 Wizard of flexible subsystem。

2.4.2 刚柔耦合系统建模

 回到 UM Input 程序主界面,从路径 "D:\UM 培训教程\几何素材\刚柔 耦合系统"依次导入几何素材支座.img,刚体 img 和弹簧.img,将支 座.img 设置为 Scene image,重力方向默认为 Z 轴向下,重力加速度 g = -9.81m/s²。

2) 创建第一个刚体,命名为刚体A,从Image下拉菜单选择几何刚体,勾选Compute automatically,程序会自动根据几何图形计算出物体的质量、转动惯量和质心位置,如图 2-104。

- 复制生成第二个刚体,命名为**刚体 B**,参数与刚体 A 相同。 3)
- 先在左侧模型树选中 Subsystems, 然后在右侧交互界面点击按钮 +, 添 4)

加一个子系统,从 Type 下拉菜单中选择 Linear FEM subsystem。

图 2-105

5) 在弹出的文件浏览器窗口,定位到路径 "D:\UM 培训教程\我的 UM 模 型\刚柔耦合系统",选中 Beam,点击 OK,将 Beam 以子系统方式导入 当前 UM 模型。 **/**

Read FEM model of object		\times
Scan the forder:		
D:\UM培训教程\我的UM模型\刚柔耦合系统		ŝ
✓ - C→ D:\UM培训教程\我的UM模型\刚柔耦合系统 Implies Beam	Data imported from program: ANSYS Name of solution: FEM 12.04.2017,23:04:13, FEM Nodes: 369 Finite elements: 162 Degrees of freedom: 2214 Normal modes: 26 Static modes: 0 Computation with lumped mass matri Min. natural frequency: 5.31 Max. natural frequency: 736.41 Generalized mass matrix: No Generalized stiffness matrix: No	^
D:\UM培训教程\我的UM模型\刚柔耦合系统\Beam		
OK Cancel	< >>	~

图 2-106

6) 重命名为**柔性梁**,在 Image 页面可选择 Simplified 或 Full 模式,可选择 是否显示节点和单元,以及颜色和尺寸,如图 2-107。

图 2-107

7) 创建第一个铰, Body1 选择 Base0, Body2 选择柔性梁.FEM, Type 为6
 d.o.f., Body1 和 Body2 的铰点坐标都是原点,在 Coordinate 页面定义
 三个自由度,分别是沿X轴平动和绕Y、Z轴转动,如图 2-108。

图 2-108

8) 复制生成第二个铰,重命名为 jBase0_FEM_2,修改 Body1 和 Body2 的铰点坐标都为(10,0,0),取消 X 方向平动的自由度,如图 2-109。

Name: jBase0_FEM_2 +		Name:	jBase0_FEM_2	•	UU ~
Body1: Body2:		Body1:		Body2:	
Base0 📃 柔性梁.FEM	▼	Base0	•	柔性梁.FEM	
Type: 🌂 6 d.o.f.	\sim	Туре:	6 d.o.f.		
Geometry Coordinates		Geometr	y Coordinates		
Body 1 Body 2		Translat	tional		
🖏 Visual assignment		degrees	of freedom:		
Translation		□ X	0.000000000	00	
x: 10		Y	0.000000000	00	1
у:	C	□z	0.0000000000	00	
z:	C	Rotatio	nal		6
Rotation		degrees	of freedom:		
~	C	Orientat	tion angles		
~	C	3,1,2			
~	C	✓ 1	0.000000000	00	-
Shift after rotation		2	0.000000000	00	
x:	C	✓ 3	0.000000000	00	1
v	C				
7.	C				
2.					

图 2-109

9) 创建第三个较, Body1 选择 Base0, Body2 选择刚体 A, Type 为 Translational, Body1 的较点坐标(5,0,0.5), Body2 的较点坐标为 刚体 A 局部坐标系的原点,定义刚体 A 相对总体坐标系有沿 Z 轴平动 的自由度,如图 2-110。

图 2-110

10) 复制生成第四个铰, Body2 选择刚体 B, Type 为 Translational, Body1 的铰点坐标(5,0,1.5), Body2 的铰点坐标为刚体 B 局部坐标系的原 点, 刚体 B 相对总体坐标系也具有沿 Z 轴平动的自由度,如图 2-111。

图 2-111

11) 先选中左侧模型树 Bipolar forces,然后点击右侧按钮 +,添加一个力元,这种力元只作用于两个物体的两点连线上,力的数值是相对速度或位移的函数,常用于模拟各种线性和非线性阻尼器,这里我们用它来模拟简单的弹簧阻尼元件。

图 2-112

12) Body1 选择柔性梁.FEM, Body2 选择刚体 A, 从 GO 下拉菜单选择弹 簧赋给力元,连接点坐标分别为(4.5,0,0)和(-0.5,0,0),从 Type 下拉菜单选择 Linear。

图 2-113

13) 定义刚度系数为 k1(赋值 1.0e6 N/m),阻尼系数为 c1(赋值 1.0e4 Ns/m), 定义弹簧自然长度为 0.5 m, 如图 2-114。

图 2-114

14) 复制生成第二个力元,将 Body1 连接点坐标修改为(5.5,0,0), Body2 连接点坐标修改为(0.5,0,0),其余不变。

15) 复制生成第三个力元,将 Body1 改为刚体 A, Body2 改为刚体 B, 连接 点坐标分别为(-0.5,0,0.5)和(-0.5,0,0),定义刚度系数为 k2(赋 值 5.0e5 N/m),阻尼系数为 c2(赋值 4.0e3 Ns/m),如图 2-115。

图 2-115

- 16) 复制生成第四个力元,将 Body1 连接点坐标修改为(0.5, 0, 0.5), Body2 连接点坐标修改为(0.5, 0, 0),其余不变。
- 17) 点击左侧模型树的 Summary, 检查模型是否有逻辑错误。
- 18) 保存模型,关闭 UM Input 程序。
- 至此,我们完成了一个刚柔耦合振动系统的建模。

2.4.3 动力学仿真

 运行 UM Simulation 仿真程序,选择菜单 File → Open...,加载模型。 如果在安装软件时勾选了 "Associate files *.dat with UM"选项,那么 我们可以通过双击模型文件 input.dat 直接打开模型,如图 2-116。

名称	修改日期	类型	大小	
Beam	2020/3/13 23:09	文件夹		
input.dat	2020/3/14 0:32	Universal Mecha	7 КВ	
input.xv	2020/3/14 0:33	XV 文件	1 KB	
object.bmp	2020/3/14 0:32	BMP文件	226 KB	
🔬 柔性梁.ini	2020/3/14 0:34	配置设置	3 KB	
	UM Input Open model in the UM Input			
	UM Simulation Open model in the UM Simulation			-
			57.00	

图 2-116

 拖动鼠标自由调整动画窗口的大小和位置(一般不要最大化),在动画 窗口通过鼠标和工具栏按钮自由调整模型视图。

图 2-117

3) 选择主菜单 Tools → Wizard of variables...打开变量向导(或点击工具

栏按钮 ^{*}),定义柔性梁 FEM 的垂向位移变量(从点(0,0,0)到点(10,0,0)每米取一个点,共计11个),如图 2-118。

📑 Wizard of variables									
a+b Expression User variables	👫 Reactions 📋 Coordinates 💿 Solver variables 📑 All forces id Identifiers								
Variables for group of bodies	🔍 Joint forces 🕺 Bipolar forces 🛆 Angular variables 🛃 Linear variables								
🖃 🔳 刚柔耦合系统	Selected								
—————————————————————————————————————	FEM								
	Coordinates of point in the body-fixed frame of reference								
	10 0 0								
	Type								
	Coordinate Dipolar vector								
	O Velocity O Bipolar velocity								
	O Acceleration O Bipolar acceleration								
	Component								
	Resolved in SC of body								
	Base0								
	Pelative to body								
	Base0								
r:z(柔性梁.FEM) r:z(柔性梁.FEM) r:z(柔性梁.FEM) r:z(柔性梁.FEM)									
r:z(柔性梁.FEM) r:z(柔性梁.FEM)									
r:z(栾性梁.FEM) r:z(柔性梁.FEM)									
r:z(柔性梁.FEM)									

图 2-118

- 4) 选择主菜单 Tools → Histogram..., 打开一个柱状图窗口, 将上一步创 建的 11 个变量全选并拖入其中。
- 5) 选择主菜单 Analysis → Simulation, 弹出仿真控制面板(或直接点击工具栏按钮)。选择求解器 Park,设置仿真时间为 20 (s),勾选选项
 Computation of Jacobian。点击 Integration,开始计算,如图 2-119。

- 6) 等待仿真完成,点击确定和 Interrupt。
- 7) 将 11 个变量从变量向导或柱状图窗口拖入仿真控制面板的 Object

variables 界面;点击按钮□,将该组变量保存为文件**刚柔耦合系统.var**,

便于以后计算调用;保持"Automatic saving of variables"为勾选状态,这样才能以文件形式保存该组变量的计算结果。

Object simulation inspector												
XVA	Inf	formation	FE subsys	stems	Tools							
Solver	Ident	ifiers	Initial conditions		Object variables							
Automatic saving of	Automatic saving of variables											
🕞 🖪 🖻												
No name												
Name	Comment]							
r:z(柔性梁.FEM)	Coordinates of point	(0,0,0) of bod	dy 柔性梁.FEM relative to B	ase0, SC Base	0, projection Z							
r:z(柔性梁.FEM)	Coordinates of point	(1,0,0) of bod	dy 柔性梁.FEM relative to B	ase0, SC Base	0, projection Z							
r:z(柔性梁.FEM)	Coordinates of point	(2,0,0) of bod	dy 柔性梁.FEM relative to B	ase0, SC Base	0, projection Z							
r:z(柔性梁.FEM)	Coordinates of point	(3,0,0) of bod	dy 柔性梁.FEM relative to B	ase0, SC Base	0, projection Z							
r:z(柔性梁.FEM)	Coordinates of point	(4,0,0) of bod	dy 柔性梁.FEM relative to B	ase0, SC Base	0, projection Z							
r:z(柔性梁.FEM)	Coordinates of point	(5,0,0) of bod	dy 柔性梁.FEM relative to B	ase0, SC Base	0, projection Z							
r:z(柔性梁.FEM)	Coordinates of point	(6,0,0) of bod	dy 柔性梁.FEM relative to B	ase0, SC Base	0, projection Z							
r:z(柔性梁.FEM)	Coordinates of point	(7,0,0) of bod	by 柔性梁.FEM relative to B	ase0, SC Base	0, projection Z							
r:z(柔性梁.FEM)	Coordinates of point	(8,0,0) of bod	dy 柔性梁.FEM relative to B	ase0, SC Base	0, projection Z							
r:z(柔性梁.FEM)	Coordinates of point	(9,0,0) of bod	dy 柔性梁.FEM relative to B	ase0, SC Base	0, projection Z							
r:z(柔性梁.FEM)	Coordinates of point	(10,0,0) of bo	ody 柔性梁.FEM relative to	Base0, SC Bas	e0, projection Z							
Integrat	ion		Message		Close							

图 2-120

8) 点击 Integration,执行计算,计算完毕,这样 11 个变量的结果都保存 了下来,如图 2-121。

	Object	t simulation	inspector									
Ш	Solver	Identifiers	Initial conditions	Object variables	XVA	Information	FEM subsystems	Tools				
	Auto	omatic saving	of variables									
11		Nama Milz	予押合で法									
	No name											
	Name Comment											
	r:z(\$	e性梁.FEM)	Coordinates of po	oint (0,0,0) of bod	y 柔性粱	FEM relative	to Base0, SC Base), projec	tion Z			
	r:z(\$	e性梁.FEM)	Coordinates of po	oint (1,0,0) of bod	y 柔性粱	FEM relative	to Base0, SC Base), projec	tion Z			
	r:z(\$	全性梁.FEM)	Coordinates of po	oint (2,0,0) of bod	y 柔性深	FEM relative	to Base0, SC Base), projec	tion Z			
	r:z(\$	全性梁.FEM)	Coordinates of po	oint (3,0,0) of bod	y 柔性深	FEM relative	to Base0, SC Base), projec	tion Z			
	r:z(3	全性梁.FEM)	Coordinates of po	oint (4,0,0) of bod	y 柔性粱	FEM relative	to Base0, SC Base), projec	tion Z			
	r:z(e性梁.FEM)	Coordinates of po	oint (5,0,0) of bod	y 柔性深	FEM relative	to Base0, SC Base), projec	tion Z			
	r:z(\$	e性梁.FEM)	Coordinates of po	oint (6,0,0) of bod	y 柔性榮	FEM relative	to Base0, SC Base), projec	tion Z			
	r:z(ਤ	た性深.FEM)	Coordinates of po	oint (7,0,0) of bod	y 柔性炎	E.FEM relative	to Base0, SC Base), projec	tion Z			
	r:z(즭	R性深,FEM)	Coordinates of po	oint (8,0,0) of bod	y 架性榮 - 柔いが	E.FEM relative	to Base0, SC Base), projec	tion Z			
	r:z(g	RYE架.FEM)	Coordinates of po	oint (9,0,0) of bod	y 亲性绨	E.FEM relative	to Base0, SC Base), projec	tion Z			
	r:z(;;	(出生 来。FEM)	Coordinates of po	oint (10,0,0) of bo	ay 亲性:	R.FEM relative	e to Baseu, SC Base	eu, proje	ection Z			
	X-valu	Jes							1			
	Time								<u>t</u>			
		Integ	gration		Mes	sage			Close			

图 2-121

9) 选择主菜单 Tools → Graphical window..., 打开一个绘图窗口, 将图
 2-121 所有计算结果拖入绘图窗口。

10) 在绘图窗口选中曲线, 点右键, 可以选择输出数据至记事本或 MS Excel 表格。

N PI	ots									
Varia	ots bles riz(柔性 riz(柔性 riz(柔性 riz(柔性 riz(柔性 riz(柔性 riz(柔性 riz(柔性 riz(柔性	Options Edit Open c Delete Copy as Copy as Copy to Copy to	opy in W s diagram te statisti s table to o clipboa s static v om file file file iable for e for x-a all automa	A /izard o m to ac ical dat o active ard ariable r x-axis axis val tically	of Vriab trive MS a MS Ex s values	les Excel l cel boc	book () ok () () (Del Ctrl+E Ctrl+F Ctrl+T Ctrl+C Ctrl+S		
		Save va	lues for	abscis	sa					

11) 选择主菜单 Tools → Table Processor..., 打开一个变量处理窗口, 将图
 2-121 所有计算结果从仿真控制面板或绘图窗口拖入变量处理窗口, 这里
 内置了一些数据处理函数, 勾选 MaxAbs 和 Std Dev, 如图 2-124。

Processor of variables											
Stay on top											
Table processor Transf	ormation of variables										
Percentile_abs_0_ ▲ Percentile_abs_0	MaxAbs Std_Dev										
Percentile_abs_1	r:z(柔性梁.FEM) - Coordinates of point (0,0,0) of body 柔性 5.5511151E-0016 7.388124	45E									
Percentile_abs_99	r:z(柔性梁.FEM) - Coordinates of point (1,0,0) of body 柔性: 0.2558586 0.07921	724									
Percentile_abs_99	r:z(柔性梁.FEM) - Coordinates of point (2,0,0) of body 柔性 0.49009025 0.15182	195									
	r:z(柔性梁.FEM) - Coordinates of point (3,0,0) of body 柔性: 0.68155086 0.21126	355									
Min_Mean	r:z(柔性梁.FEM) - Coordinates of point (4,0,0) of body 柔性: 0.80982101 0.251150	072									
4Max_Zero	r:z(柔性梁.FEM) - Coordinates of point (5,0,0) of body 柔性: 0.85568696 0.265420	355									
4Min_Mean ValueAtPosition	r:z(柔性梁.FEM) - Coordinates of point (6,0,0) of body 柔性: 0.80982101 0.251150	072									
Ride_Comfort_G Ride_Comfort_V	r:z(柔性梁.FEM) - Coordinates of point (7,0,0) of body 柔性: 0.68155086 0.21126	355									
Lateral_Sperling_I	r:z(柔性梁.FEM) - Coordinates of point (8,0,0) of body 柔性: 0.49009025 0.15182	195									
UIC513_Nmv_axy	r:z(柔性梁.FEM) - Coordinates of point (9,0,0) of body 柔性: 0.2558586 0.07921	724									
RMS	r:z(柔性梁.FEM) - Coordinates of point (10,0,0) of body 柔性 4.4408921E-0016 7.735969	9E-(
Integral Integral IntegralAbs LastAbscissa LastOrdinate Max Max_Min Max_Min_2 Mean Mean_plus_Std_D Min MinAbs Std_Dev Std_Dev3 ▼											

图 2-124

12) 选择主菜单 Tools → Statistics..., 打开一个统计窗口, 将图 2-121 所有 计算结果从仿真控制面板或绘图窗口拖入统计窗口, 可查看其功率谱密 度分布图, 如图 2-125。

图 2-125

- 13) 现在,请点击仿真控制面板的 Close 按钮,将其关闭。
- 14) 选择主菜单 Analysis → Static and linear analysis, 弹出线性分析控制面
 - 板(或直接点击工具栏按钮2)。

Static and linear analysis	
O 🕞 🎒 🖽 🧮 🔣	
Equilibrium Frequencies/Eigenvalues Root locus Linear vibra	tions Identifiers Initial conditions Options
✓ Frequencies and modes	 ☐ Eigenvalues ☑ Use zero velocities ☐ Skip damping matrix Frequency/Damping ratio ▼ Sort by: frequency
-	

图 2-126

15) 勾选左侧的 Frequencies and modes 和右侧的 Eigenvalues,点击按钮 ♀, 可计算系统的各阶固有模态的频率及阻尼比,如图 2-127(左侧无阻尼, 右侧有阻尼)。

quilit	brium Frequenci	es/Eigenvalues	Root locus	Linear vibration	s Ide	ntifiers Initia	al conditions 0	ptions
/ Fr	equencies and	modes			V Eig	jenvalues		
	f (Hz)			*	🗸 Us	e zero velociti	es	
1	0.730241				📃 Ski	ip damping ma	trix	
2	3.47973				Frequ	uency/Dampin	a ratio	
3	5.15791				Incqu	acticy/bampin	grado	
4	8.01754				Sort	by: frequency	1	
5	9.61979					f (Hz)	Beta(%)/r	
6	22.2608				1	0.730303	0.31	
7	22.4281				2	3.46788	8.28	
8	37.8418				3	5.15782	0.56	
9	50.3314				4	7.94376	20.98	
10	59.1305				5	9.61879	2.45	
11	85.1424				6	21.9071	9.56	
12	89.1363				7	22.4407	2.12	
13	92.8198				8	37.8011	5.04	
14	116.087				9	50.2746	4.75	
15	130.504			-	10	58.8839	7.03	
nima	ation of modes							

图 2-127

16) 选中某一阶频率,点击按钮 • 可以在动画窗口观察其模态振型。

图 2-128

- 17) 关闭线性分析工具。
- 18) 关闭 UM Simulation 程序。
- 19) 最后,在计算机上打开模型文件夹,你会发现增加了很多文件,其中名为 last 的系列文件是最后一次的仿真配置文件,名为**刚柔耦合系统**的系列文件则对应计算变量及其结果。

▶ 计算机 ▶ DATA (D:) ▶ UM培训教程	▶ 我的UM模型 ▶ 网	柔耦合系统 →	
辑(E) 查看(V) 工具(T) 帮助(H)			
包含到库中 ▼ 共享 ▼ 刻录 新	建文件夹		
名称	修改日期	类型	大小
] Beam	2017-10-14 23:13	文件夹	
💽 input.dat	2017-10-14 23:13	Universal Mecha	7 KB
input.xv	2017-10-17 11:21	UM Document. I	1 KB
🔳 last.fin	2017-10-17 13:46	FIN 文件	1 KB
🛋 last.icf	2017-10-17 13:46	ICF 文件	7 KB
🔳 last.la	2017-10-17 13:46	LA 文件	1 KB
🧾 last.par	2017-10-17 13:46	PAR 文件	1 KB
🔘 last.xv	2017-10-17 13:46	UM Document. I	1 KB
🛃 object.bmp	2017-10-14 23:13	BMP 图像	226 KB
] 刚柔耦合系统.imc	2017-10-17 12:30	IMC 文件	844 KB
💿 刚柔耦合系统.sgr	2017-10-17 12:30	UM Document	188 KB
💿 刚柔耦合系统.tgr	2017-10-17 12:30	UM Document. L	4 KB
刚柔耦合系统.tmc	2017-10-17 12:30	TMC 文件	1 KB
📄 刚柔耦合系统.var	2017-10-17 12:03	VAR 文件	4 KB
柔性梁.ini	2017-10-17 13:46	配置设置	3 KB

图 2-129

2.5 实例五: 自动控制系统

图 2-130 所示为一个典型的自动控制系统,该模型由两个刚体(人体和平衡 车)组成。惯性参考系原点位于平衡车走行面,平衡车沿 X 轴有平动自由度, 初始速度 V。人体相对平衡车具有绕 Y 轴转动自由度,初始转动一定角度。在 重力作用下,人体会向下倾,系统靠作用在平衡车上的时变控制力维持平衡。 本例用到的模块: UM Base、UM Control。

2.5.1 机械系统建模

- 运行 UM Input 程序,新建一个 UM 模型,另存为 "D:\UM 培训教程\ 我的 UM 模型\自动控制系统"。
- 2) 从路径 "D:\UM 培训教程\几何素材\自动控制系统" 依次导入几何素材 平衡车.img 和人体.img。

图 2-131

3) 创建第一个刚体,命名为平衡车,从 Image 下拉菜单选择几何平衡车, 设置质量为 5 图 2-74。

4) 创建第二个刚体,命名为人体,从 Image 下拉菜单选择几何人体,设置 质量为 75,转动惯量为 (0,20,0),质心坐标为 (0,0,1)。

图 2-133

 5) 创建第一个铰, Body1 选择 Base0, Body2 选择平衡车, Type 为 Translational, Body1 的铰点为(0, 0, 0.2), Body2 的铰点为原点, 平动自由度方向为X轴。

图 2-134

6) 创建第二个铰, Body1 选择平衡车, Body2 选择人体, Body1 和 Body2
 的铰点坐标都为(0,0,0),转动自由度方向为Y轴。

图 2-135

 7) 先选中左侧模型树 T-forces, 然后点击右侧按钮 +, 添加一个时变力元, Body1 选择 Base0, Body2 选择平衡车, 在 Force 第一栏定义一个符号 fx, 初始值为 0。

图 2-136

2.5.2 控制系统建模

- 选择开始菜单 → Universal Mechanism 8.5 → Tools → UM Block Editor (或在 UM 安装路径找到程序 BlockEditor.exe,双击运行)。
- 2) 从 Inputs and Outputs 模块分别将 Input 和 Output 拖入图板一次,分别对应控制系统的输入和输出信号。

图 2-137

从 Algebra and logic 模块将 Gain 比例环节拖入图板三次,分别双击设置系数(增益)为 50, 20, 200。

Untitled - BlockEditor		- 0
File Edit View Help	Gain Gain	Inputs and Outputs Algebra and Logic Mathematics Trigonometry Digital Macro Shapers TAC Other Algebra and Logic Imacro Shapers TAC Other Algebra and Logic Imacro Shapers TAC Other Algebra and Logic Imacro Imacro Shapers TAC Other Algebra and Logic Imacro Imacro Multiplier Analog Divider Imacro Imacro Imacro Imacro Other Imacro Imacro

图 2-138

4) 从 TAC 模块将 Intergator 积分器拖入图板一次。

5) 从 TAC 模块将 Real Differential 微分器拖入图板一次,双击设置时间常 数 0.001。

图 2-140

 从 Alegbra and logic 模块将 Summator 加法器拖入图板一次,双击设置 输入通道为 3。

8) 保存到模型目录下,命名为 control.be,关闭 Block Editor。

2.5.3 动力学仿真

 运行 UM Simulation 仿真程序,选择菜单 File → Open...,加载模型。 也可通过双击模型文件 input.dat 直接打开模型。拖动鼠标自由调整动 画窗口的大小和位置(一般不要最大化),在动画窗口通过鼠标和工具 栏按钮自由调整模型视图。

图 2-143

2) 选择主菜单 Tools → External library Interface, 弹出外部库向导界面。

- 87 -

3) 点击按钮 +, 添加一个外部库。

图 2-145

4) 点击按钮 , 加载控制系统 "D:\UM 培训教程\我的 UM 模型\自动控制

 ,								
+≫ Wizard of external librarie	95			- • •				
🕞 🖪 🕂 🖬 🛍	Path to external library							
	D:\UM培训教程\我的UM	D:\UM培训教程\我的UM模型\自动控制系统\control.be						
External libraries (*.dll, *.be)	Model name	cont	rol					
External library 1	State variables	0						
	Incuta		Outputs	Darametera				
	V In I < (none)		Out1> (none)	Gain_Coer = 50 Gain1_Coef = 20				
				Gain2 Coef = 200				
				Integral_InitialValue = 0				
				RealDifferential_T = 0.00100				
OK Apply	Cancel							

图 2-146

5) 选择主菜单 Tools → Wizard of variables...打开变量向导(或点击工具

栏按钮^{A=}),定义人体绕Y轴转动的角度变量,并拖入控制系统的Inputs 下方的In1,作为输入信号。

a+b Expression User variable	s 👫 Reactions	Coordinates	Solver var	iables 🛛 茸 All fo	rces id Identifier
Variables for group of bodies	C T-Forces	Joint forces 🔸 🕨	External libraries	🛆 Angular variable	es 🛛 🛃 Linear variabl
글 🔳 自动控制系统	Selected				
□ 平衡车	人体				
└── 🗹 人体	Use orientat	ion at zero coordina	tes		
	Type of variab	le	~	-	
	Rot. vector) Ang. velocity	O Ang.	acceleration
	Component	-	-	-	-
	Ox	⊙ Y	Οz	OIVI	O V
	Resolved in SC	ofbody			
	Base0				•
	Relative to bo	tv			
	Base0	- ,			
ng:y(人体)	Vector of rotation of	body 人体 relative	to Base0, SC Base0	, projection Y	1
ig:y(人体)					
			_		

6) 双击控制系统的 Outputs 下方的 Out1,从下拉菜单中选择符号 fx,作为输出信号。

Image: Wizard of external librarie Image: Wizard	s Path to external library D:\UM培训教程\我的UM模型\(i	目动控制系统\control.be	
External libraries (*.dll, *.be)	Model name contr State variables 0	rol	
	Inputs ✓ In1 < ang:y(人体) - Vec	Outputs Image: Output of the second secon	Parameters Gain_Coef = 50 Gain1_Coef = 20
OK Apply	Cancel	 External library -> Model p Assign external library output value fx Value of UM parameter when connol 0 Assign also No identifiers of the same name OK Cancel 	e to the following UM parameter:

图 2-148

7) 勾选 External library 1,并保存。

 Wizard of external librarie Wizard of external librarie H H	es Path to external library D: \UM培训教程\我的UM模型\信 Model name contr State variables 0	动控制系统\control.be r ol			
	Inputs ✓ In1 < ang:y(人体) - Vec	Outputs	Parameters Gain_Coef = 50 Gain1_Coef = 20 Gain2_Coef = 200 Integral_InitialValue =	0	
◎ 另存为					X
O O V III « DATA (D:)	▶ UM培训教程 ▶ 我的UM模	型 ▶ 自动控制系统 ▼	✤ 搜索 自动控制	系统	م
组织 ▼ 新建文件夹				•== •	?
 CONTACT Matlab work UM User Mod News 	名称	修改日期 没有与搜索条件匹配的项	<u></u> 类型	大小	
 □ 库 ■ 视频 ■ 图片 ■ 文档 					,
	u				-
	and a second				-
● 隐藏文件夹			保存(S)	取消	

图 2-149

8) 创建控制力元的矢量 Fv,并拖入动画窗口。

External libraries	Angular variables	💒 Linear variable	s a+b Expression	User variables	🕪 Reactio	
Coordinates	🕑 Solv	ver variables	id	id Identifiers		
💞 Variables for <u>o</u>	group of bodies	•	T-Forces	🔍 Doi	nt forces	
🖻 🗹 自动控制系统	Selected					
🔤 🗹 控制力元	控制力元					
	Type Force	2	◯ Torqu	e		
	Compone	ent 🔿 Y	Oz) v	
	Resolved	d in SC of body				
	Base0				-	
	A = 1 =					
	O body	1: Base0				
	 body 	2: 平衡车				
Fv(控制力元)	T-Force: force	(控制力元), Vector			F	

9) 选择主菜单 Analysis → Simulation, 弹出仿真控制面板。选择求解器 Park,设置仿真时间为1s,数据步长为0.0002s,容差为1e-7,勾选选 项 Computation of Jacobian。

Object simulatio	on inspector					
Solver	Identifiers	Initial conditions	Object variables	XVA	Information	Tools
Simulation proces	s parameters	Solver options Typ	e of coordinates for bod	lies		
Solver BDF ABM Park Gear 2 Park Parallel Time Step size for anime Error tolerance Delay to real to Keep system m Computation of Block-diago	Ty Ty Ty Ty Ty Ty Ty Ty Ty Ty Ty Ty Ty T	pe of solution Null space method (Range space metho > \local 1 storage 0.0002 1E-7 solution	NSM)			
Inte	egration		Message			Close
		图	2-151			

10) 切换到 **Initial conditons**页面,设置平衡车初始速度 2 m/s,人体相对平 衡车初始角度 0.5 rad。

	10	Identifiers Initial co			nditions Object variables XVA				Information Tools	
Coordinates	Cons	straints on	initial co	nditions						
- 8	a		Эİх	=0 v=0	$\dot{\nabla}$					
ť.	i √	Coordinat	te	Ve	elocity		Com	ment		
1.1		0		2			jBas	;e0_平衡车	1c	
1.2		0.5		0			j平í	新车_人体	1a	
c					-					

11) 点击 Integration,开始计算。

图 2-153

12) 请读者自行尝试不加控制系统的仿真工况,如图 2-154。

图 2-154

Softwa

3. 轨道交通系统动力学建模与仿真

3.1 铁路交通

图 3-1	

图 3-1 所示为一个典型的铁道车辆多刚体系统模型,该模型由一个车体和两 个转向架子系统组成。其中转向架子系统里有一个构架、两个轮对和四个轴箱, 构架与轮对之间有一系悬挂,车体和构架之间有二系悬挂,模型共计 50 个自由 度。

本例用到的模块: UM Base、UM Subsystem、UM Loco。

3.1.1 多刚体车辆动力学建模

3.1.1.1 刚体与铰

- 1) 运行 UM Input,新建模型,保存为 "D:\UM 培训教程\我的 UM 模型\ 多刚体车辆模型"。
- 从"D:\UM 培训教程\几何素材\多刚体车辆模型"依次导入建模所需的 几何素材轴箱.img,构架.img,一系弹簧.img,二系弹簧.img 和减振器.img。
- 3) 将轴箱几何重名为轴箱 F,复制生成第二个,命名为轴箱 R,将其绕 Z 轴旋转 180°。

图 3-2

 创建第一个刚体,命名为轴箱 FL,选择几何轴箱 F,定义质量 50,转 动惯量(1,5,5)。

- 5) 复制生成第二个刚体,命名为轴箱 FR。
- 6) 复制生成第三个刚体,命名为轴箱 RR,选择几何轴箱 R。
- 7) 复制生成第四个刚体,命名为轴箱 RL。

8) 创建第五个刚体,命名为构架,选择几何构架,定义质量参数 mframe (1605),转动惯量(1216,1136,2219),质心坐标(0,0,-0.09)。

9) 选中左侧模型树 Subsystems,点击右侧按钮[↓],添加一个子系统,从下 拉菜单中选择 Wheelset,命名为轮对 F,在 General 页面设置名义半径 0.45,滚动圆跨距之半 0.7465。

图 3-5

10) 切换到 Identifiers 页面,设置轮对质量 1000,侧滚和摇头转动惯量 800, 点头转动惯量 100。

Edit subsystem							
General Position	Identifiers	Inertia parameters					
Whole list							
Name	Expression	Value					
mwset	1000						
ixwset	800						
iywset	100						
axlelength	2.2						
y_axlebox	1.05						

图 3-6

11) 切换到 Position 界面,设置轮对 F 子系统在总体坐标系中的位置,纵向 前移 1.5,垂向上移 0.45。

12) 复制生成第二个子系统,重命名为轮对 R,设置 Position, X = -1.5。

13) 创建第一个铰, Body1 选择轮对 F.Wset, Body2 选择轴箱 FL, 类型为
 Rotational, 铰点坐标分别为(0, 1.025, 0)和(0, 0, 0), 转动轴都
 选择 Y 轴。

- 14) 复制生成第二个铰, Body2 更改为轴箱 FR, Body1 铰点坐标修改为(0, -1.025, 0)。
- 15) 复制生成第三个铰, Body1 更改为轮对 R.Wset, Body2 更改为轴箱 RR。
- 16) 复制生成第四个铰, Body2 更改为轴箱 RL, Body1 铰点坐标修改为(0, 1.025, 0)
- 17) 创建第五个铰, Body1 选择 Base0, Body2 选择构架, 类型为 6 d.o.f., 较点坐标分别为(0,0,0.73)和(0,0,0)。切换到整体视图, 如图 3-10。

3.1.1.2 一系悬挂

 选中左侧模型树 Linear forces,点击右侧按钮[↑],创建第一个一系弹簧 力元,命名为一系弹簧 FL。Body1 选择轴箱 FL,Body2 选择构架,选 择几何一系弹簧,勾选 Automatic computation for 2nd body,输入弹簧 下点和上点坐标(0,0,0.2)和(0,0,0.5)。

2) 在 Parameters 页面,定义弹簧预压力 fz1,回车,点 Accept,然后到左侧列表双击 fz1,在弹出窗口定义表达式:9.81*(mcarbody/8+mframe/4), 这时程序会自动创建新的符号参数 mcarbody,保持缺省值为 0。

图 3-12

 点击 Stiffness matrix 栏的按钮,输入刚度矩阵,如错误!未找到引用源。, 其中 kxy_1 为纵向和横向刚度(9.5e5), kz_1 为垂向刚度(9.0e5)。

coordinate-co	oord	inate				coordinate-	andle				
kxy_1	С		С		С		C	-kxy_1*0.3/	2 0		C
	С	kxy_1	С		С	kxy_1*0.3/	2 0		С		C
	С		С	kz_1	C		С		С		C
angle-coordir	nate					angle-angle					
	С	kxy_1*0.3/2	С		С	10000	C		С		C
-kxy_1*0.3/	20		С		С		С	10000	С		С
	С		С		С		С		С	1000	C

图 3-13

- 4) 复制生成第二个一系弹簧力元,重命名为一系弹簧 FR,更改 Body1 为轴 箱 FR。
- 5) 复制生成第三个一系弹簧力元,重命名为一系弹簧 RR,更改 Body1 为轴 箱 RR。
- 6) 复制生成第四个一系弹簧力元,重命名为一系弹簧 RL,更改 Body1 为轴 箱 RL。切换到整体视图,如错误!未找到引用源。。

图 3-14

- 7) 选中左侧模型树 Bipolar forces,点击右侧按钮 ↑,创建第一个一系减振器力元,命名为一系垂向减振器 FL,Body1 选择轴箱 FL,Body2 选择构架,选择几何减振器。
- 8) 定义减振器下点和上点坐标分别为(0.25,0,-0.04),(1.76,1.025,0.215), 选择力元类型 linear,定义阻尼系数 1e4。

- 9) 复制生成第二个一系减振器力元,更改 Body1 为轴箱 FR,修改减振器 上点坐标为(1.76, -1.025, 0.215)。
- 10) 复制生成第三个一系减振器力元,更改 Body1 为轴箱 RR,修改减振器 下点和上点坐标分别为(-0.25,0,-0.04),(-1.76,-1.025,0.215)。
- 11) 复制生成第四个一系减振器力元,更改 Body1 为轴箱 RL,修改减振器 上点坐标为(-1.76, 1.025, 0.215)。切换到整体视图,如错误!未找到 引用源。。

www.tongsuan.cn

12) 选中左侧模型树 Special forces, 点击右侧按钮 1, 创建第一个转臂节 点力元,命名为转臂节点 FL,从下拉菜单中选择 Bushing, Body1 选择 轴箱 FL, Body2 选择构架。

13) 在 Position\Body1 页面输入连接点坐标(-0.53, 0, -0.04), 然后勾选 Autodetection; 在 Description 页面定义刚度,纵向平动刚度 1e7,横向 平动刚度 5e6, 垂向平动刚度 1e7, 绕 X 轴转动刚度 1e4, 绕 Z 轴转动 刚度 1e4。

Body	y1:	Body2:				
轴箱	FL	▼ 构架	-			
Туре	: 🕒 Bushing		-			
🔽 AL	utodetection			Positio	n Description	
Posi	ition Descript	ion		Type:	Linear	•
Bo	dv 1 Bodv 2			CX	1.0e7	-
R	,			CY	5.0e6	
-Тr	Visual assign	ment		CZ	1.0e7	
x	-0.53		С	CAX	1.0e4	
			C	CAY		
у.				CAZ	1.0e4	
Z:	-0.04			DX		
	station					

- 14) 复制生成第二个转臂节点力元,更改 Body1 为轴箱 FR。
- 15) 复制生成第三个转臂节点力元,更改 Body1 为轴箱 RR,修改连接点坐 标为(0.53,0,-0.04)。
- 16) 复制生成第四个转臂节点力元,更改 Body1 为轴箱 RL。

3.1.1.3 二系悬挂

 选中左侧模型树 Linear forces,点击右侧按钮[↑],创建第一个二系弹簧 力元,Body1 选择构架,Body2 选择 External,选择几何二系弹簧,勾 选 Automatic computation for 2nd body,在 Body1 页面输入弹簧下点和 上点坐标(0,0.94,0)和(0,0.94,0.2)。

图 3-19

2) 在 Parameters 页面,定义弹簧预压力 fz2,点 Accept,然后到左侧列表 双击 fz2,在弹出窗口定义表达式: 9.81*mcarbody/4。

ame	Expression	Value
	20	
nframe	1605	
mcarbody	0	
fz1	9.81*(mcarbody/8+r	3936.2625
kxy_1	9.500000E+5	
kz_1	9.000000E+5	
fz2	9.81*mcarbody/4	0

图 3-20

 点击 Stiffness matrix 栏的按钮, 输入刚度矩阵, 如错误!未找到引用源。, 其中 kxy 2 为纵向和横向刚度(1.25e5), kz 2 为垂向刚度(1.5e5)。

lements :oordinate	-coord	inate				coordinate	-angle			
xxy_2	C		С		C		С	-kxy_2*0.2/2	2	C
	C	kxy_2	С		С	kxy_2*0.2	/2 C	L	2	C
	C		С	kz_2	С		C			C
angle-coor	dinate					angle-angle	e			
	С	kxy_2*0.2/2	С		C	10000	C			C
-kxy_2*0.:	2/2 C		С		С		С	10000	2	C
	С		С		С		С	L	1000	C

图 3-21

4) 点击 Damping matrix 栏的按钮,输入垂向阻尼系数 10000。

coordinate-coordinate			coordinate-angle		
	C	C		C	С
C	C	C	C	C	C
C	C 10000			C	C
ngle-coordinate		ang	le-angle		
	C	C	C	C	C
C	0	C		C	C
C	C	C	C	C	C

图 3-22

5) 复制生成第二个二系弹簧力元,修改弹簧下点和上点坐标(0,-0.94,0) 和(0,-0.94,0.2)。

- 6) 选中左侧模型树 Bipolar forces,点击右侧按钮[♣],创建第一个二系横 向减振器力元, Body1 选择构架, Body2 选择 External, 选择几何减振 器。
- 7) 定义减振器左点和右点坐标分别为(0.24, 0.24, 0.105),(0.24, -0.36, 0.105), 勾选 Autodetection。
- 8) 选择力元类型 Viscous-elastic, 定义刚度系数 5e6, 阻尼系数 5e4。

图 3-23

9) 复制生成第二个横向减振器力元,修改减振器两个连接点坐标分别为 (-0.24, -0.24, 0.105), (-0.24, 0.36, 0.105).

- 10) 复制生成第一个抗蛇行减振器力元,修改减振器两个连接点坐标分别为 (-0.16, 1.315, -0.17), (0.54, 1.315, -0.17).
- 11) 更改力元类型为 Nonlinear viscous-elastic。

图 3-24

12) 点击 Spring 栏的按钮 , 定义减振器串联接头刚度(横坐标为弹簧变 形,纵坐标为弹簧力)。

13) 点击 Damper 栏的按钮 🔜,定义减振器非线性特性(横坐标为相对速 度)。

图 3-26

- 14) 复制生成第二个抗蛇行减振器力元,修改减振器两个连接点坐标分别为 (-0.16, -1.315, -0.17), (0.54, -1.315, -0.17)。
- 15) 点击 切换到整体视图,点击中间动画窗口工具栏图标 ,从下拉菜 单选择 Show all,可看到每个元素都有相应标记。

图 3-27

至此,我们完成了转向架系统一系和二系的建模,记得保存一下。

3.1.1.4 整车装配

 左侧选中模型树 Object,在右侧 General 页面点击按钮 Transform into subsystem,这样就把一个转向架模型压缩成了一个子系统,便于整体 操作。

图 3-28

2) 重命名为转向架 F,在 Position 定义 X 平动 9。

- 3) 复制生成第二个子系统,重命名为转向架 R, Position 定义 X 平动-9。
- 4) 点击 Edit subsystem, 进入转向架 R 子系统。
- 5) 将构架几何绕 Z 轴旋转 180°。

图 3-30

- 6) 点开 Bipolar forces,修改第一个抗蛇行减振器力元的连接点坐标为 (0.16, 1.315, -0.17),(-0.54, 1.315, -0.17);修改第二个抗蛇行减振器力元的连接点坐标为(0.16, -1.315, -0.17),(-0.54, -1.315, -0.17)。
- 7) 点击 Accept,完成修改,退出子系统。
- 8) 从"D:\UM 培训教程\几何素材\多刚体车辆模型"导入几何素材车体。
- 9) 在左侧参数符号列表区点右键,选择菜单 Add from subsystem...,从列 表中选择转向架 F 子系统里的 mcarbody 参数,将其设置为 40000(kg), 弹出提示,点击 OK,这样将两个转向架子系统里的 mcarbody 参数也 都赋值 40000。

10) 创建车体刚体,定义质量 mcarbody,转动惯量(1e5, 2e6, 2e6),质

心坐标 (0,0,1.75); 点击按钮 ☞,创建一个六自由度铰。

图 3-33

11)最后,我们需要将车体和两个转向架子系统建立连接。在二系力元建模时,还没有车体这个物体,因此所有的Body2都选择为一个虚拟物体 External,两个连接点的坐标都在Body1坐标系中定义的。在左侧模型 树选择Connection,右侧交互界面选中任意一个力元,点右键,选择 Assign to all,然后选择车体局部坐标系原点(其实车体上任意点都行), 这样就用车体替换了子系统里的External 虚拟体。

3.1.2 多刚体车辆动力学仿真

1) 运行 UM Simulation 程序,加载多刚体车辆模型。自由调整动画窗口大 小、位置和视图方向。

图 3-36

2) 打开仿真控制面板,选择 Park 求解器,设置仿真距离 1500m,设置数 据采样步长为 0.005s,勾选 Computation of Jacobian。

Object simu	lation inspect	or					
Solver	Identifiers	Initial condition	ns Object variables	Rail/Wheel	XVA	Information	Tools
Simulation p	rocess parameter	s Solver options	Type of coordinates for b	odies			
Solver BDF ABM Park Gear 2		Type of solution Null space meth Range space m	od (NSM) ethod (RSM)				
Park Pa Distance - V Step size for Error tolerar	rallel ehicle distance <u>t</u> animation and da ice	. >= ▼ 1 ata storage 0.005 1E-6	500 🔟				
Delay to	real time simulation tem matrix decon tion of Jacobian	on nposition					
Block	diagonal Jacobian ian for wheel/rail	n forces					
Stop simi	liation on wheel d	ieraiiment					
	Integration		Message			Close	

图 3-37

 切换到 Rail/Wheel→Track→Model and parameters 页面,设置轨底坡
 0.025rad,轮轨型面坐标原点横向间距 6.0mm,轨道模型为无质量钢轨, 下方可定义轨道整体刚度和阻尼。

Object simulation inspector				
Solver Identifiers Initial co	ditions Object variables	Rail/Wheel	XVA	Information Tools
🖙 🖪 📐 🖙 🦻				
Track Profiles Contact Forces Spee	4			
Model and parameters Managementary	runan darihira 🛛 Tarana			
Geometry	Irregularides Image			
Rail inclination (rad) 0.025				
SCR-SCW distance (mm) 6.0				
Track model				
Massless rail				
Inertial rail				
Flexible track				
Parameters				
Number	Cur	ve		
Stiffness per one rail				
Vertical stiffness (N/m)	4 000 000			
Lateral stiffness (N/m)	8 000 000			
Torsional stiffness (Nm/rad)	.6E25			
Torsional stiffness is taken into accoun	t			
Damping per one rail				
Vertical damping (Ns/m)	00 000			
Lateral damping (Ns/m)	00 000			
Integration	Message	Ì		Close

图 3-38

4) 切换到 Track→Macrogeometry 页面,选择 Curve 类型轨道,定义直线 段长度 60m,缓和曲线长度 440m,圆曲线长度 500m,圆曲线半径 5500m,超高 0.15m。

Object simulation inspector			
Solver Identifiers Initia	al conditions Object variables	Rail/Wheel XVA Information	Tools
🗁 🖪 🛓 🕤 羧			
Track Profiles Contact Forces S	Speed		
Model and parameters Macrogeome	Try Irregularities Image		
Track type	C Curren	Cram file	
Curve	 S-curve Switch 	U From me	
First section			
L1 60			
P11 440			
S1 500			
R1 5500			
P12 440			
dY1 0			
L 1440			
V' 71.570316			
Smoothing 8.00			
[<u></u>)[]
Integration	Message	Close	

图 3-39

5) 切换到 Track → Irregularities 页面,选择 Uneven,不平顺类型为 From file,然后分别设置左、右轨垂向和横向的不平顺,如错误!未找到引用 源。。

Object simulation inspector
Solver Identifiers Initial conditions Object variables Rail/Wheel XVA Information Tools
□ □ ↓ 「示 ?
Track Profiles Contact Forces Speed
Model and parameters Macrogeometry Irregularities Image
Track type © Even © Uneven
Type of irregularities Image: Strom file Image: Deterministic
Files Deterministic Identifiers List of groups
☞ 目 Vertical irregularities Left rail D:\UM培训教程\不平顺样本\缺路\CRH2017_Z_Left.way
Right rail D: \UM培训教程\不平顺样本\铁路\CRH2017_Z_Right.way 🗾
Factor 1
Lateral irregularities
Left rail D:\UM培训教程\不平顺样本\铁路\CRH2017_Y_Left.way 🔒
Right rail D:\UM培训教程\不平顺样本\铁路\CRH2017_Y_Right.way 🝰
Factor 1
Integration Message Close

图 3-40

6) 切换到 Rail/Wheel → Profiles → Wheels 页面,点击+按钮,将

Chinese LMA.wpf 车轮踏面添加进来,然后将其选中,点右键,选择菜 单 Assign to all,赋给每个车轮。

Object si	mula	tion inspector						
Solve	r	Identifiers Initial cond	ditions Object v	variables	Rail/Wheel	XVA	Information	Tools
Track Wheels Profiles Set of +	Profile Rails Rails Wheel D:\Ur D:\Ur	Contact Forces Speed Contact options Wheel difference profiles niversal Mechanism\UM Workin	forms gyw\prfynewlocow.v gyw\prf\chinese	vpf Add	wheel profile			
				Delet Assig	e selected pro in to all in profile edit	files or		
	WS	Left wheel	ß	Сору	file path	Ī		
	1	Chinese LMA.wpf		Show	file in folder			
	2	Chinese LMA.wpf	_	_	Chinese LMA.wp	pt		
	3	Chinese LMA.wpf			Chinese LMA.wp	of		
	4	Chinese LMA.wpf			Chinese LMA.wp	of		
		Integration	M	essage			Close	

7) 切换到 Profiles → Rails 页面,点击+按钮,将 CN_Rail_60.rpf 钢轨

外形添加进来,然后将其选中,点右键,选择菜单 Assign to both rails, 赋给左右轨。

Object sim	ulation inspect	or						
Solver	Identifiers	Initial conditions	Object	variables	Rail/Wheel	XVA	Information	Tools
Track Pro Wheels F Leftrail Rightrail Set of rail	Contact offles Contact Cails Contact of D:\Univ D:\Univ profiles Universal Mecha	Forces Speed pptions Wheel forms ersal Mechanism \UM Wo ersal Mechanism \UM Wo nism \UM Working \rw \or	rking \rw \prf\ rking \rw \prf\ F\CN_Ra	CN_Rail_(CN_Rail_(Add ra	50.rpf 50.rpf iil profile			ř ř
Profile e Control po Track	evolution pints: left rail Profile			Delete Assign Assign Open Copy f Show f	selected profile to left rail to right rail to both rails in profile editor ile path ile in folder	es		
	Integration		M	lessage			Close	
		V	图 3-42	2				

 初换到 Rail/Wheel → Contact → Contact forces 页面,选择 Non-elliptical 或 FASTSIM 蠕滑模型。

9) 切换到 Rail/Wheel → Speed 页面,选择匀速模式 v=const,并设置速度控制力作用于车体,如错误!未找到引用源。。

Object simu	lation inspec	tor							
Solver	Identifiers	Init	tial conditio	IS	Object variables	Rail/Wheel	XVA	Information	Tools
🖻 🖻	\$ \vec{1}{2}	Ŵ							
Track Prof	iles Contact	Forces	Speed						
-Mode of long	gitudinal motion								
Neutral					🔘 Pr	ofile			
v=const					() v=	=0			
Speed contr	ol parameters								
Body 多网	则体车辆模型.4	¥体.							-
Point 0.00	0			0.000			1.000		
Amplifier		1000000)						
	Integration				AndreaseM		[Close	
	integration				message			CIUSE	

图 3-44

10) 切换到 Identifiers → List of identifiers 页面,设置车辆初始速度 v0 为
 300,在弹出窗口点击 OK。

Object s	imulatio	on inspect	or							
Solve	er l	Identifiers	Initial	conditions	Object va	ariables	Rail/Wheel	XVA	Information	Tools
List of id	entifiers	Identifier (control							
🖻 E		多刚	体车辆模型	<u>l</u>		.10	7 .1	X		•
Whole li	st				O Ide	ntifiers	of the same r	na 👝		
Name		Expressi	on	Value	✓ √0 (300) n架F.v0 ((20)			
v0		300			☑ 转向	架R.v0	(20)			
mcarbo	dy	4.00000	00E+4							
						ж	Cancel			
	In	tegration			Me	ssage			Close	
	Object si Solve List of ide Whole li Name v0 mcarbo	Object simulation	Object simulation inspect Solver Identifiers List of identifiers Identifiers Identifiers Identifiers Identifiers Identifiers Image: I	Object simulation inspector Solver Identifiers Initial of List of identifiers Identifier control	Object simulation inspector Solver Identifiers Initial conditions List of identifiers Identifier control Image: Control inspector Image: Control inspector Image: Control inspector Image: Control inspector	Object simulation inspector Solver Identifiers Initial conditions Object value List of identifiers Identifier control Image: Control Image: Control Image: Control Whole list Image: Control Image: Control Vhole list Image: Control Image: Control V0 300 Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control V0 300 Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control	Object simulation inspector Solver Identifiers Initial conditions Object variables List of identifiers Identifier control	Object simulation inspector Solver Identifiers Initial conditions Object variables Rail/Wheel List of identifiers Identifier control Image: Control Image: Control Image: Co	Object simulation inspector Solver Identifiers List of identifiers Identifier control Image: Control Contecontrol Contervity Contervity Control Control Control Control Co	Object simulation inspector Solver Identifiers List of identifiers Identifier control Image: Control Contecontrol Conteron Contecontrol Control Control Control Control Co

图 3-45

11) 选择主菜单 Tools→Options,或直接在工具栏上修改车辆初始速度单位 为 km/h。这里的单位只对 v0 参数有效,计算结果均为国际单位(m, rad,kg,s,N)。

Options		×	
Export to MS Ex	cel Bug report	ts Wear parameters	
General	Autosave	Format of numbers	
General			
Automatically letter	oad the last model		
Automatically r	emove incompatible v	/ariables	
Z-axis directer (while comput	d downward ing scalar variables)		
Temporary directo	ory:	Speed unit	
C:\Users\ADMINI	~1\AppData\Loc 😅	í in an sean a	Kл
Graphical windows	wn tool panel for gra text file	phical windows	4
Prefix for commen	ts:	X	
		OK Cancel	
			_

图 3-46

12) 打开变量向导, 创建第一轮对左轮脱轨系数变量, 并拖入一个绘图窗口。

- 13) 点击工具栏图标^{^{OD}},打开接触斑动画窗口,勾选 Contact patches,并 调整大小和位置;
- 14) 点击工具栏图标 , 打开轮轨接触力动画窗口。
- 15) 点击仿真控制面板 Integration 按钮开始仿真。
- 16) 在模型动画窗口点右键,选择菜单 Camera → Add camera in current position, Camera → Camera setting,在 Camera follow the body 可选 择镜头跟随车体。

图 3-48

17) 在绘图窗口点右键,选择菜单 Show all,可自动调节以适应窗口。

图 3-49

18) 在**轮轨接触力**动画窗口,可设置矢量箭头单位长度表示力的大小,缺省 状态动画窗口里最近处为一位轮对,可根据个人习惯转动视角。

图 3-50

19) 仿真过程如错误!未找到引用源。,如果将动画窗口最小化,计算会非常快。

图 3-51

3.1.3 构建刚柔耦合车辆系统

本节介绍将刚性构架替换为柔性构架的方法,操作如下:

- 复制前一节建立的多刚体车辆模型(整个文件夹),重命名为刚柔耦合 车辆模型。
- 2) 将"D:\UM 培训教程\FEM 素材"目录下的 Frame 文件夹整体复制到 "D:\UM 培训教程\我的 UM 模型\刚柔耦合车辆模型",如错误!未找到 引用源。。

▶ 计算机 ▶ DATA (D:) ▶ UM培训教程 ▶ 我的U	M模型 ▶ 刚柔耦合车		
) 查看(V) 工具(T) 帮助(H)			
打开 包含到库中 ▼ 共享 ▼ 刻录	新建文件夹		
、 名称 [^]	修改日期	类型	大小
\mu Frame	2017-10-27 20:37	文件夹	
🕑 input.dat	2017-10-27 15:48	Universal Mecha	2 250 KB
input.xv	2017-10-27 15:50	UM Document. I	1 KB
📄 last.fin	2017-10-27 17:07	FIN 文件	1 KB
last.icf	2017-10-27 17:07	ICF 文件	4 KB
📄 last.par	2017-10-27 17:07	PAR 文件	1 KB
🛋 last.rwc	2017-10-27 17:07	RWC 文件	4 KB
💿 last.xv	2017-10-27 17:07	UM Document. I	1 KB
🛃 object.bmp	2017-10-27 15:48	BMP 图像	226 KB

图 3-52

- 3) 运行 UM Input 程序,加载刚柔耦合车辆模型。
- 在左侧模型树选中子系统转向架F,然后在右侧面板点击Edit subsystem, 进入前转向架子系统。

图 3-53

5) 删除刚体构架和相应的铰。

图 3-54

6) 添加一个**子系统**,选择 Linear FEM Subsystem,定位到路径 "D:\UM 培训教程\我的 UM 模型\刚柔耦合车辆模型",选中 Frame,点 OK,导 入柔性体,命名为构架。

Data imported from program: ANSYS1
Data imported from program: ANSYS1
Name of solution: frame 29.09.2017, 16:40:46, bogie Nodes: 50871 Finite elements: 51149 Degrees of freedom: 305226 Normal modes: 94 Static modes: 0 Computation with lumped mass matrix Min. natural frequency: 59.92 Max. natural frequency: 1427.24 Generalized mass matrix: No Generalized stiffness matrix: No

图 3-55

7) 在构架子系统 Position 页面,设置高度 0.73m,在 Image 页面可以设置 显示模式。

图 3-56

8) 将所有一系力元的第二个 Body 设置为构架.frame。

图 3-57

9) 将所有二系力元的第一个 Body 设置为构架.frame。

- 120 -

10) 点击 Summary, 如果某些力元没有设置作用的物体, 会有 Error 提示, 根据提示找到这些力元, 并完成设置即可。

11) 点击 Accept, 保存对转向架 F 子系统的修改,并退出子系统。

12) 保存模型,关闭 UM Input 程序,然后就可以用 UM Simulation 进行仿 真了。

3.2单轨交通

图 3-61

错误!未找到引用源。所示为一个典型的跨座式单轨车辆模型,该模型由一 个车体和两个转向架子系统组成。其中转向架子系统里有一个构架、四个走行轮、 四个导向轮和两个稳定轮,轮胎作为一系悬挂,车体和构架之间有二系悬挂,模 型共计 38 个自由度。

本例用到的模块: UM Base、UM Subsystem、UM Monorail。

3.2.1 跨座式单轨车辆动力学建模

3.2.1.1 刚体与铰

- 1) 运行 UM Input,新建模型,保存为 "D:\UM 培训教程\我的 UM 模型\ 跨座式单轨车辆模型"。
- 从"D:\UM 培训教程\几何素材\跨座式单轨车辆模型"依次导入建模所 需的几何素材构架.img,走行轮.img,导向轮 img,稳定轮.img,空气 弹簧.img 和减振器.img。

创建第一个刚体,命名为构架,选择几何构架,定义质量 2000,转动惯量(1000,800,1200),质心坐标为(0,0,0.2)。

图 3-63

 创建第二个刚体,命名为走行轮 FL,选择几何走行轮,定义质量 40, 转动惯量(1.5, 3.0, 1.5)。

图 3-64

- 5) 将刚体走行轮 FL 复制三次,分别重命名为走行轮 FR、走行轮 RR 和 走行轮 RL。
- 6) 创建第六个刚体,命名为导向轮 FL,选择几何导向轮,定义质量 20, 转动惯量(0.5, 1.0, 0.5)。

7) 将刚体导向轮 FL 复制三次,分别命名为导向轮 FR、导向轮 RR 和导 向轮 RL。

8) 创建第十个刚体,命名为稳定轮L,选择几何稳定轮,定义质量20,转动惯量(0.5,1.0,0.5)。

图 3-66

- 9) 将刚体稳定轮L复制一次,命名为稳定轮R。
- 10) 创建第一个铰, Body1 选择 Base0, Body2 选择构架, 类型为 6 d.o.f., 较点坐标都为各自的原点, 无需修改。

图 3-67

11) 创建第二个铰, Body1 选择构架, Body2 选择走行轮 FL, 类型为
Rotational, 两个物体铰接点坐标分别为(0.8, 0.17, 0.4)和(0, 0, 0),
转动轴都为 Y 轴 (0, 1, 0)。

图 3-68

12) 在 Joint force 页面选择 Expression 类型的力元,定义 F=M_control (对 于转动铰,这里的 F 表示转矩),用于仿真速度控制。

		Name: 构架_走行轮Fl	+ 🕂 🗓	\bigtriangledown
		Body 1:	Body2:	
X		构架 👱	」 走行轮FL	-
	1	Type: < Rotational		~
		Geometry Description	Joint force	
		a+b Expression		\sim
		Description of force/mo Pascal/C expression: F= Example: -cstiff*(x-x0)-cdiss*v+	ment =F(x,v,t) -ampl*sin(om*t)	
		F= M_control		P
~	🕑 Initiali	zation of values		×
	Identifier	Value	Comment	
	m_control	0		
	Accept	Add to the sheet:	Whole list	~

图 3-69

- 13) 复制生成第三个铰, Body2 更改为走行轮 FR, Body1 的铰接点坐标为 (0.8, -0.17, 0.4)。
- 14) 复制生成第四个铰, Body2 更改为走行轮 RR, Body1 的铰接点坐标为 (-0.8, -0.17, 0.4)。
- 15) 复制生成第五个铰, Body2 更改为走行轮 RL, Body1 的铰接点坐标为 (-0.8, 0.17, 0.4)。切换到整体视图模式, 如错误!未找到引用源。。

16) 创建第六个铰, Body1 选择构架, Body2 选择导向轮 FL, 类型为
Rotational, 两个物体的铰接点坐标分别为(0.85, 0.745, -0.335)和(0, 0, 0),转动轴分别为 Z 轴负向(0, 0, -1)和 Y 轴(0, 1, 0)。在 Description
页面可预览该自由度,确保导向轮铰坐标增加时对应车辆前进方向。

图 3-71

- 17) 复制生成第七个铰, Body2 更改为导向轮 FR, Body1 的连接点为(0.85, -0.745, -0.335), Body1 的转动轴为 Z 轴正向(0, 0, 1), 与左侧相反。
- 18) 复制生成第八个铰, Body2 更改为导向轮 RR, Body1 的连接点为(-0.85, -0.745, -0.335)。
- 19) 复制生成第九个铰, Body2 更改为导向轮 RL, Body1 的连接点为(-0.85, 0.745, -0.335), Body1 的转动轴为 Z 轴负向(0, 0, -1), 与右侧相反。

图 3-72

- 20) 复制生成第十个铰, Body2 更改为稳定轮 L, Body1 的连接点为(0, 0.745, -1.3)。
- 21) 复制生成第十一个铰, Body2 更改为稳定轮 R, Body1 的连接点为(0, -0.745, -1.3), Body1 的转动轴为 Z 轴正向(0, 0, 1), 与左侧相反。

图 3-73

3.2.1.2 悬挂力元

 1) 选中左侧模型树 Special forces,点击右侧按钮[◆],从下拉菜单中选择 Tyre 轮胎力元,Body1 选择 Base0,Body2 选择走行轮 FL。

- 2) 将轮胎力元走行轮 FL 复制 9 次,依次选择 Body2 为走行轮 FR、走行 轮 RR、走行轮 RL、导向轮 FL、导向轮 FR、导向轮 RR、导向轮 RL、 稳定轮 L 和稳定轮 R (并无严格的先后顺序)。
- 3)选中左侧模型树 Linear forces,点击右侧按钮[▲],创建左侧的空气弹簧 力元,Body1 选择构架,Body2 选择 External,选择几何空气弹簧,勾 选 Automatic computation for 2nd body,输入弹簧下点和上点坐标(0, 0.95,0.6)和(0,0.95,0.8)。

www.tongsuan.cn

4) 在 Parameters 页面,定义弹簧预压力 fz2,回车,点 Accept,然后到左侧列表双击 fz2,在弹出窗口定义表达式: 9.81*mcarbody/4,这时程序会自动创建新的符号参数 mcarbody,保持缺省值为 0。

5) 点击 Stiffness matrix 栏的按钮, 输入刚度矩阵, 如错误!未找到引用源。, 其中 kxy 2 为纵向和横向刚度(1.25e5), kz 2 为垂向刚度(1.5e5)。

🕑 Matrix of lin	ear force elem	ent			\times
Elements					
coordinate-coord	inate		coordinate-angle		
kxy_2	C	C	C	-kxy_2*0.2/2 C	C
C	kxy_2	C	kxy_2*0.2/2 C	C	C
C	C	kz_2 C	C	C	C
angle-coordinate			angle-angle		
C	kxy_2*0.2/2 C	C	C	C	C
-kxy_2*0.2/2 C	C	C	C	C	C
C	C	C	C	C	C
				ОК	Cancel
		图 3-77			

6) 复制生成右侧的空气弹簧力元,修改弹簧下点和上点坐标(0, -0.95, 0.6)和(0, -0.95, 0.8)。

- 7) 选中左侧模型树 Bipolar forces,点击右侧按钮 [◆],创建左侧的减振器, Body1 选择构架,Body2 选择 External,选择几何减振器,勾选 Autodetection,Body1 连接点坐标(0.25,0.1,0.6),Body2 连接点坐 标(0.25,0.4,0.9)。
- 8) 从下拉菜单选择力元 Points(numeric),横坐标设为速度 v,勾选压缩为 正 Positive: compression,点击 Force 栏按钮题打开曲线编辑器,定义 非线性的阻尼特性,如错误!未找到引用源。。

图 3-78

9) 复制生成右侧的减振器,修改 Body1 连接点坐标(-0.25, -0.1, 0.6), 修改 Body2 连接点坐标(-0.25, -0.4, 0.9)。

10) 选中左侧模型树 Special forces, 点击右侧按钮+, 添加一个力元, 选择

类型 Bushing, Body1 选择构架, Body2 选择 External, 勾选 Autodetection, 在 Body1 界面设置连接点(0, 0, 0.5), 在 Description 页面设置线性牵引刚度 CX=1e7。

	Body1: Body2:
Name: 牵引刚度 🕈 🗜 🔟	构架 🔽 External 🔽
Comments/Text attribute C	Type: 🕒 Bushing 👻
	Autodetection
Body1: Body2:	Position Description
构架 External	Type: Linear 🔹
Bushing V	CX 1.0e7
Autodetection	CY
Position Description	CZ
Body 1 Body 2	CAX
🖏 Visual assignment	CAY
Translation	CAZ
x:	DX
y: C	DV
z: 0.5 C	DZ

图 3-79

11) 复制生成第二个 **Bushing** 力元,在 **Body1** 界面设置连接点(0,0,0.7), 在 **Description** 页面设置线性抗侧滚刚度 **CAX=1e6**。

		🕅		Body 1:		Body2:	
Name: 抗侧滚刚度	- + 🕩	Ĩ		构架		▼ External	•
Comments/Text attribut	e C			Type:	Bushing		
				V Auto	detection		
Body 1:	Body2:			Positio	n Description		
	External	_		Type:	Linear		•
Bushing		~		CX			*
Autodetection				СҮ			
Position Description				cz			
Body 1 Body 2				CAX	1e6		
🏷 Visual assignment				CAY			
Translation				CAZ			
x:		<u> </u>		DX			
у:		C		DY			
z: 0.7		C		DZ			
		क	רה י	00			
		13	ຊ 3-	00			

 12) 复制生成第三个 Bushing 力元,在 Body1 界面设置连接点(0,0,0.65), 在 Description 页面下拉菜单选择类型 Generalized,然后到 Fy 页面, 选择 Point(numeric),横坐标设为位移 x,勾选压缩为正 Positive:

compression .

N.	Body1: Body2:
Name: 横向止挡 🕈 🖬	构架 ▼ External ▼
Comments/Text attribute C	Type: 🕒 Bushing 👻
	Autodetection
Body1: Body2:	Position Description
构架 _ External _	Type: Generalized
Type: 🖨 Bushing 🗸 🗸	2 My 2 My 2 Mz
Autodetection	? Fx 14 Fy ? Fz
Position Description	Points (numeric)
Body 1 Body 2 S Visual assignment Translation	Type of abscissa
	Positive: compression
z: 0.65 C	Type of abscissa matching
Potation	X value O F value
	Length (L): 0 C
~ <u>C</u>	Point X(L)/F(L):
~ <u>C</u>	Periodic dependence
Shift after rotation	
x: C	
y: C	Force: (none)
z:C	Factor: 1
图:	3-81

13) 点击 Force 栏按钮 ☑打开曲线编辑器,点击按钮 ☑,读取"D:\UM 培 训教程\曲线素材"路径下的横向止挡.crv 文件,其非线性特性如错误! 未找到引用源。。

至此,我们完成了转向架系统的建模,记得保存一下。

3.2.1.3 整车装配

 左侧选中模型树 Object,在右侧 General 页面点击按钮 Transform into subsystem,这样就把一个转向架模型压缩成了一个子系统,便于整体 操作。

图 3-84

3) 复制生成第二个子系统,重命名为转向架 R, Position 定义 X 平动-5 m。

Name

Expression

Value

y: z:

- 从 "D:\UM 培训教程\几何素材\跨座式单轨车辆模型"导入几何素材车体。
- 5) 在左侧参数符号列表区点右键,选择菜单 Add from subsystem...,从列 表中选择转向架 F 子系统里的 mcarbody 参数,将其设置为 15000kg, 弹出提示,点击 OK,这样将两个转向架子系统里的 mcarbody 参数也 都赋值 15000 kg。

6) 创建**车体**刚体,定义质量 mcarbody,转动惯量(2e4, 2e5, 2e5),质

心坐标 (0, 0, 1.75); 点击按钮 №, 创建一个六自由度铰。

Comments/Text at	ribute C			Body1			Body2		
Oriented points Parameters	Vectors Position	3D Conta Point	act	Base0 Type:	•	 6 d.o.f.	车体		• ~
Coordinates (PP):	Quaternion		\sim	Geome	etry	Coordinates			
Go to element Image: 全体 Compute automa Inertia parameters Mass: mcar Inertia tensor: 2e4 C	Visib tically body <u>C</u>	e	 C C C C C 	Trans degre	latio es o (7 z ional es o tatio	nal f freedom: 0.0000000000 0.0000000000 0.0000000000	000	 	<u>X</u> X
E		2e5	C	3,1,	2	0.000000000	00	 	~ •⁄
Added mass matrix		(none)			2	0.0000000000	000	 	1
Coordinates of cen	ter of mass	1.75	C		3	0.0000000000	00		1

图 3-87

7) 然后,我们需要将车体和两个转向架子系统建立连接。在二系力元建模时,还没有车体这个物体,因此所有的 Body2 都选择为一个虚拟物体 External,两个连接点的坐标都在 Body1 坐标系中定义的。在左侧模型 树选择 Connection,右侧交互界面选中任意一个力元,点右键,选择 Assign to all,然后选择车体局部坐标系,这样就用车体替换了子系统里 的 External 虚拟体。

8) 最后,在左侧模型树选中 Object,右侧面板 General 界面 Comments 处输入备注 Monorail,这样仿真程序才能调用单轨模块的功能,否则是 汽车模块。

9) 点击 Summary,检查是否有逻辑错误,保存模型,关闭 UM Input 程序。

3.2.2 跨座式单轨车辆动力学仿真

1) 运行 UM Simulation 程序,加载跨座式单轨车辆模型。自由调整动画窗 口大小、位置和视图方向。

图 3-91

 打开仿真控制面板,选择 Park 求解器,设置仿真时间 30s,设置数据采 样步长为 0.005s,勾选 Computation of Jacobian。

Solver	Identifiers	Initial conditions	Object variables	XVA In	formation	Tools	Monorail train
Simulation pro	ocess parameter	s Solver options	ype of coordinates for bo	odies			
Solver BDF ABM Park Gear 2 Park Par	allel	Type of solution Null space method Range space meth	(NSM) od (RSM)				
Step size for Error tolerand Delay to r Keep syst Computat	animation and di te eal time simulatio em matrix decon on of Jacobian diagonal Jacobia	ata storage 0.005 IE-6 Dn nposition					

图 3-92

3) 切换到 Monorail train → Tires, 点击按钮 +, 添加 "D:\UM 培训教程 **轮胎模型**"路径下的三个轮胎模型。

👩 ग्रम						×
	- 📔 ▶ 计算机 ▶ DA	.TA (D:) ▶ UM培训教程	▶ 轮胎模型	▼ 45 j	搜索 轮胎模型	Q
组织 ▼	新建文件夹					
<u> </u>	名称	*	修改日期	类型		
	目 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一		2017-10-28 22:24	TR 文件		
	📄 稳定轮.tr		2017-10-28 22:24	TR 文件		
	📄 走行轮.tr		2017-10-28 22:23	TR 文件		
					没有预计	
1	•	III		•		
	文件名(N):	"导向轮.tr" "稳定轮.tr" ";	走行轮.tr"	• Ty	yre model (*.tr) 打开(O)	▼

图 3-93 4) 在页面下方点右键,选择菜单 Assign to all driving wheels → 走行轮.tr, 这样就给每一个走行轮定义了轮胎模型。

		Joject vanable						
Options and parameters Tools Id	dentification	Resistance	Speed Flexible track					
Combined slip								
Simulate transient process in tyres								
Set of tire models								
 + 2. D: \UM培训教程\轮胎模型\浔回轮 	j.tr j.tr							
3. D: \UM培训教程\轮胎模型\走行轮	}.tr							
Wheel	Model	Stat. load	Deflection					
跨座式单轨车辆模型.转向架F.走行轮FL	走行轮	0.00kN	0.0mm					
跨座式单轨车辆模型.转向架F.走行轮FR	走行轮	0.00kN	0.0mm					
夸座式单轨车辆模型.转向架F.走行轮RR	走行轮	0.00kN	Assign to all driving wheels					
夸座式单轨车辆模型.转向架F.走行轮RL	走行轮	0.00kN	Assign to all guiding wheels					
夸座式单轨车辆模型.转向架F.导向轮FL	none	0.00kN	Assign to all stabilizing wheels					
夸座式单轨车辆模型.转向架F.导向轮FR	none	0.00kN 导向轮.tr (Wheel)(T)						
跨座式单轨车辆模型,转向架F.导向轮RR	none	0.00kN	稳定轮.tr (Wheel)(R)					
傍座式甲轨车辆模型,转同梁F,导同轮RL	none	0.00kN	走行轮.tr (Wheel)(W)					
跨座式甲轨车辆模型,转向梁F,稳定轮L	none	0.00kN L						
跨坐式甲钒车辆限型,转回梁F,稳定轮K	none	0.00kN	0.0mm					
跨座式里轨车辆模型,转回梁R,走行轮H。	走行轮	0.00kN	0.0mm					
跨座式甲制车辆煤型,转回采R,走行轮R。 商店式单体左连带到 结合加回 未行处回	走打轮 土在44	0.00kN	0.0mm					
吃座于前林方每道利,站向如5,400米K,走门轮KK	正1J北 土行松	0.00kN	0.0mm					
医座式手机手柄探望:我问来心定门轮心。	XE11#G	0.00kN	0.0mm					
资金式单轨车辆横型,转向架,导向轮的。	none	0.00kN	0.0mm					
密座式单轨车辆模型,转向架R,导向轮88	none	0.00kN	0.0mm					
磨座式单轨车辆模型,转向架R,导向轮R	none	0.00kN	0.0mm					
CONTRACT OF A DESCRIPTION OF A DESCRIPTI	none	0.00kN	0.0mm					
跨座式单轨车辆模型,转向架R,稳定轮L								

图 3-94

- 5) 在页面下方点右键,选择菜单 Assign to all guiding wheels → 导向轮.tr, 这样就给每一个导向轮定义了轮胎模型。
- 6) 在页面下方点右键,选择菜单 Assign to all stabilizing wheels → 稳定 轮.tr,这样就给每一个稳定轮定义了轮胎模型。
- 7) 切换到 Options and parameters 页面,设置导向面和稳定面的横向距离 之半均为 0.45m。

Solver Identifier	rs Initial condi	tions Object	variables XV	A Information	Tools	Monorail train	
2 🖪 📐							
Tires Options and para	meters Tools Id	dentification Resis	tance Speed Fl	exible track			
Use irregularities							
Type of track							
Undeformed			© F	exible			
Type of bogie			0.1				
Lower			00	pper			
Macro-geometry							
C-pl							
Driving (left)							
Driving (right)							
Cuiding (left)							
Guiding (iert)							
Guiding (right)							<u>k</u>
Stabilizing (left)							
Stabilizing (right)							2
Factor	1.000						
Coherent right irregula	arities						
Wired beam image							
Parameters							
Numeric parameters							
Name	١	/alue					
Guideway base (m)	3	3.7					
Bridge pillar base (m)	3	30					
Shift along Z of pillar GO) (m) 0						
Beam-image step (m)	2	2					
Kinetic energy for stop ((0) (0)	0.01					
Guiding wheel contact Y	(m) 0	0.45					
Stabilizing wheel contact	t Y (m) 0).45					
L							
Integra	tion		Message			Class	

图 3-95

8) 切换到 Tools 页面,从下拉菜单选择 Beam section profile。

Object simu	ulation inspect	or							
Solver	Identifiers	Initial conditions	Object variables	XVA	Information	Tools	💂 Monorail train		
🖻 🖻									
Tires Options and parameters Tools Identification Resistance Speed Flexible track									
🕞 🖻	Beam section	profile						-	
Name	Longitudinal sp	eed history							
	Beam section (profile							
Data Input/	/Edit	Points: 13	••••						
Material									
Young's mo	dulus	3.55E10							
Poisson's ra	Poisson's ratio 0.2								
Density		2500							
								11	

图 3-96

然后点击 Data Input/Edit 栏的 ··· 按钮,弹出曲线编辑器,点击曲线编 9) 辑器工具栏按钮 →,读取"D:\UM 培训教程\曲线素材"路径下的跨座 式单轨梁.crv 文件。

◎ 跨座式单轨梁.crv - Curve editor + -‡-‡ 🛍 Line - 8 🖻 🛠 -0,8 0. 0,8 x Ν Туре Smoothing Y ⊡... Cu... 1 -0.45 0 Line Yes 2 0.45 Line Yes 0 -0.5 3 0.45 Line Yes 4 0.35 -0.6 Line Yes 5 0.35 -0.9 Line Yes 6 0.45 -1 Line Yes 7 0.45 -1.5 Line Yes -0.45 -1.5 Line 8 Yes -0.45 9 -1 Line Yes -0.35 -0.9 Line Yes -0.35 -0.6 Line Yes ОК Cancel

	文件夹				
	名称		修改日期	类型	
	📄 橫向止挡.crv		2017-11-03 23:23	CRV 文件	
	📄 跨座式单轨梁.crv		2017-11-03 21:20	CRV 文件	
Ji Matlab =					
UM Us					
📕 News					没有拟党。
肩库					
📑 视频					
(四) 因는					
E AL	•	III		4	
■ 國方					a
■ 回Л ③ 文档 ▼	文件名(N): 跨座式单轨梁.cr	v		 UM cu 	rve files (*.crv)

10) 切换到 Speed 页面,选择 v=0 模式。

Object sime	ulation inspect	or					
Solver	Identifiers	Initial conditions	Object variables	s XVA	Information	Tools	Ronorail train
🖻 🖻	£. ₽		_				
Tires Op	tions and parame	ters Tools Identifi	cation Resistance	Speed Flexi	ible track		
-Speed mod	e						
Neutral				Prof	ile		
© v=cons	t)		
🔽 Automati	c termination of e	equilibrium test					
🛛 🔽 Lock hori	zontal shift of ca	r body					

图 3-98

11) 点击 Integration,进行静平衡计算,经过约 5s,程序提示"Test succed. Accept results?",点击是(Y)。

图 3-99

12) 在 Tires 页面,可以看到各个轮胎的预压力与压缩量;在 Initial conditions 页面,可以看到每个物体在各方向的位移量(相对与建模位置)。

Wheel	Model	Stat. load	Deflection	跨座式	甲轨车	納	異型.		
跨座式单轨车辆模型.转向架F.走行轮FL	走行轮	23.99kN	24.0mm		ŵ	۷	Coordinate	Velocity	Comment
跨座式单轨车辆模型.转向架F.走行轮FR	走行轮	23.99kN	24.0mm	1.1			0	0	j车体 1c
跨座式单轨车辆模型,转向架F,走行轮RR	走行轮	23.99kN	24.0mm	1.2			0	0	j车体 2c
跨座式单轨车辆模型,转向架F,走行轮RI	走行轮	23.99kN	24.0mm	1.3			-0.0239855837984	0	j车体 3c
密应于首都在辐射 结合如于是自然的	足向松	2 50kN	5.0mm	1.4			6.97799968655E-7	0	j车体 4a
	HURG	2.5004	5.0	1.5			0	0	j车体 5a
跨座式甲制车辆模型,转回梁F,等回轮FK	守回轮	2.50KN	5.0mm	1.6			0	0	j车体 6a
跨座式甲轨车辆模型,转回架F.导向轮RR	导同轮	2.50kN	5.0mm	1.7			7.04267340014E-8	0	转向架F.jBase0_构架 1c
跨座式单轨车辆模型,转向架F.导向轮RL	导向轮	2.50kN	5.0mm	1.8			1.548421157E-6	0	转向架F.jBase0_构架 2c
跨座式单轨车辆模型.转向架F.稳定轮L	稳定轮	2.50kN	5.0mm	1.9			-0.0239854512558	0	转向架F.jBase0_构架 3c
跨座式单轨车辆模型,转向架F.稳定轮R	稳定轮	2.50kN	5.0mm	1.10			6.67461478128E-6	0	转向架F.jBase0_构架 4a
跨座式单轨车辆模型,转向架R,击行轮FL	走行轮	23.99kN	24.0mm	1.11			-1.01182849236E-6	0	转向架F.jBase0_构架 5a
资本式单数车辆模型 转向如见 未行轮的	ま行轮	23 99KN	24.0mm	1.12			3.60349534065E-9	0	转向架F.jBase0_构架 6a
	上に払	22.00(4)	24.0	1.13			-2.34412842189E-6	0	转向架F.j构架_走行轮FL 1a
跨座式串轨车辆模型,转回梁R.走行轮RR	走17轮	23.99KN	24.0mm	1.14			2.68780189687E-6	0	转向架F.j构架_走行轮FR 1a
跨座式单轨车辆模型.转向架R.走行轮RL	走行轮	23.99kN	24.0mm	1.15			2.68780274647E-6	0	转向架F.j构架_走行轮RR 1
跨座式单轨车辆模型,转向架R.导向轮FL	导向轮	2.50kN	5.0mm	1.16			-2.34412821142E-6	0	转向架F.j构架_走行轮RL 1a
跨座式单轨车辆模型.转向架R.导向轮FR	导向轮	2.50kN	5.0mm	1.17			-1.83845613544E-5	0	转向架F.j构架_导向轮FL 1a
跨座式单轨车辆模型.转向架R.导向轮RR	导向轮	2.50kN	5.0mm	1.18			2.89337706691E-5	0	转向架F.j构架_导向轮FR 1a
跨座式单轨车辆模型,转向架R,导向轮RL	与向轮	2.50kN	5.0mm	1.19			3.03165290858E-5	0	转向架F.j构架_导向轮RR 1a
	特会校	2.50kN	5.0mm	1.20			-1.64940498364E-5	0	转向架F.j构架_导向轮RL 1a
	認定地	2.3001	3.000	1.21			-1.09865552428E-5	0	转向架F.j构架_稳定轮L 1a
跨座式甲轨车辆模型,转向架R.稳定轮R	想定轮	2.50kN	5.0mm	1.22			3.54952634557E-5	0	转向架F.j构架_稳定轮R 1a

图 3-100

13) 切换到 Speed 页面,选择 v=const 模式。

Object sim	ulation inspect	tor						
Solver	Identifiers	Initial conditions	Object variables	XVA	Information	Tools	—	Monorail train
	£.			and ri	41 . 1			
Speed mod	tions and parame le	eters Tools Identifie	cation Resistance	Flex	idle track			
 Neutral 	-			Prof	file			
● v=cons	t			⊚ v=0)			

图 3-101

14) 切换到 Identification 页面,双击 Longitudinal control torque 右边的单元格,选择转向架子系统里的参数符号 m_control,并在下方 Gain 右边的单元格将参数设置为 3000。

Solver	Identifiers	Initial conditi	ons (Object variabl	es	XVA	information	Tools	🚝 Monorail trai
≥ 8	14. 14.								
ires Op	tions and parameters	Tools Ide	ntification	Resistance	Speed	Flexible tra	ick		
.ongitudina	al speed control								
Parameter	s								
Identifiers	5								
Name		Identi	fier						
				warbody= warbody= 好向架F 好向架R monorail bri	15000 dge				
Numeric p	arameters								
Name		Value							
Gain		1000							
Integral d	ontrol factor	0							

图 3-102

15) 切换到 Options and parameters 页面,勾选 Use irregularities,设置轨 道线路 "D:\UM 培训教程\曲线素材\R300.mcg",设置路面不平度如错 误!未找到引用源。,设置 factor=0.5,勾选 Coherent right irregularities。

Object simulation	inspector							
Solver Id	entifiers	Initial conditions	Object variables	XVA	Information	Tools	📮 Monorail train	
🖻 🖻 🗎								
Tires Options ar	nd parameters	Tools Identif	cation Resistance S	peed Flexi	ble track			
Use irregularitie	s							
Type of track								
Oundeformed			0	Flexible				
Type of bogie								
Lower			0	upper				
Macro-geometry	₩₩₩₩₩₩₩₩₩	tt)p 200					-21	
Macro-geometry D:\UM培训教程\曲线素材\R300.mcg								
Irregularities:							~[
Driving (left)	1	D:\UM培训教程\7	、平顺样本\单轨\走行转	ê_L.irr			<u> </u>	
Driving (right)		D:\UM培训教程\7	、平顺样本\单轨\走行	论_R.irr			<u> </u>	
Guiding (left)	C	D:\UM培训教程\7	平顺样本\单轨\导向转	ĝ_L.irr			<u>i</u>	
Guiding (right)	C	D:\UM培训教程\7	、平顺样本\单轨\导向4	ି_R.irr			3	
Stabilizing (left)	C	D:\UM培训教程\7	平顺样本\单轨\稳定转	ି_L.irr			ŝ	
Stabilizing (right)	ſ	D:\UM培训教程\7	平顺样本\单轨\稳定转	ି <u>R.irr</u>			<u> i i i i i i i i i i i i i i i i i i i</u>	
Factor	Ī	0.500						
Coherent right	irregularities							

图 3-103

16) 切换到 **Identifiers→List of identifiers**页面,设置车辆初始速度 v0 为 40, 在弹出窗口点击 OK。

0	bject simula	tion inspect	or					
	Solver	Identifiers	Initial conditions	Object variables	XVA	Information	Tools	📮 Monorail train
1	ist of identifie	rs Identifier	control					
	₽ 8	* 跨座	式单轨车辆模型	Identifiers of	the same	na 💌		•
	Whole list			✓ 转向架F.v0 (20)		·····		
	Name	Express	ion Value	Image: State S	,			
	v0	40						
	mcarbody	1.50000	00E+4					
					Concol	1		
					Cancel	J		
				_	-			

图 3-104

17) 选择主菜单 Tools → Options,或直接在工具栏上修改车辆初始速度单位为 km/h。这里的单位只对 v0 参数有效,计算结果均为国际单位(m, rad, kg, s, N)。

Options				×				
Export to MS Ex	cel	Bug reports	Wear	parameters				
General	A	utosave	Format o	fnumbers				
 General								
Automatically le	oad the	last model						
Automatically remove incompatible variables								
 Z-axis directed downward (while computing scalar variables) 								
Temporary directo	ry:	-Speed uni	t					
C:\Users\ADMINI	⊚ km/h	⊚ m/s						
Graphical windows	Graphical windows							
🔽 Default pull-do	wn tool	panel for grap	hical windows					
Double column	text fil	e						
Prefix for commen	Prefix for comments:							
			ОК	Cancel				

图 3-105

18) 打开**变量向导**,创建前转向架四个**走行轮**的法向力变量,并拖入一个绘 图窗口。

- 19) 点击仿真控制面板 Integration 按钮开始仿真。
- 20) 在模型动画窗口点右键,选择菜单 Camera → Add camera in current position, Camera → Camera setting,在 Camera follow the body 可选择镜头跟随车体。

		Cameras		
		+ 🖬 🛍	Camera name:	
		List of cameras:	Camera 1	
		Free camera	Camera follows the body:	
		Camera 1	车体	
Coordinate system Grid P Rotation style P Modes of images P			 □ 跨座式単執车辆換 □ Base0 □ 车体 □ 卡体 □ 卡向架F □ 市約架 □ 走行轮凡 □ 走行轮凡 	편
Cameras Camera follows WSetRotat	Add camera in current position Select camera Camera settings			
Position of vector list			Position:	Look at:
Clear list of vectors			X: -14.27	X: 0.00
Vector settings			Y: -14.41	Y: 0.00
Add characteristic for this body/point			Z: 6.84	Z: 0.00
Set graphic object			Apply	Apply
Background color Window parameters				

图 3-107

20) 在动画窗口点击**右键**,选择 Show vectors for tyre/road interraction,可 显示**轮胎力**矢量。

	Coordinate system	
	Grid	۲
	Rotation style	۲
	Modes of images	۲
	Cameras	۲
	Look at	
$\mathbf{\mathbf{Y}}$	Position of vector list	۲
	Clear list of vectors	
	Vector settings	
	Show vectors for tyre/road interaction	
	Background color	
	Window parameters	

图 3-108

21) 在绘图窗口点右键,选择菜单 Show all,可自动调节以适应窗口。

图 3-109 22) 仿真过程如图 3-110,如果将动画窗口最小化,计算会非常快。

3.3 磁浮交通

图 3-111

图 3-111 所示为一个典型的高速磁浮车辆模型,该模型由一个车体和六个悬 浮架子系统组成。其中悬浮架子系统里有一个构架、两个悬浮电磁铁和两个导向 电磁铁,每个电磁铁上有四个加速度传感器,电磁铁与构架之前有一系悬挂,车 体和构架之间有二系悬挂,模型共计114个自由度。

本例用到的模块: UM Base、UM Subsystem、UM Maglev。

3.3.1 高速磁浮车辆动力学建模

3.3.1.1 刚体与铰

- 1) 运行 UM Input,新建模型,保存为 "D:\UM 培训教程\我的 UM 模型\ 高速磁浮车辆模型"。
- 2) 从 "D:\UM 培训教程\几何素材\高速磁浮车辆模型" 依次导入建模所需 的几何素材构架.img, 悬浮电磁铁.img, 导向电磁铁 img, 空气弹簧.img。

3) 将导向电磁铁几何重命名为导向电磁铁L,新建一个几何,重命名为导向电磁铁R,选择类型GO,从下拉菜单中选择几何导向电磁铁L,在GO Position页面设置绕Z轴旋转180°。

Name: 导向电磁铁R	Name: 导向电磁铁R
Description GO position GO	Description GO position Translation x:
Type:	y:C z:C Rotation Z > 180C
Parameters Colors GE position Element is a graphic object 导向电磁铁L V IP	Shift after rotation
	x: [C] y: C Z: C C

图 3-113

4) 创建第一个刚体,命名为构架,选择几何构架,定义质量参数 m_frame
 = 1000,转动惯量(1000,1000,1000),质心坐标为(0,0,0)。

图 3-114

5) 创建第二个刚体,命名为悬浮电磁铁L,选择几何悬浮电磁铁,定义质量m magnet = 600,转动惯量(20,600,600),质心坐标(0,0,-0.25)。

图 3-115

- 6) 复制刚体悬浮电磁铁L,重命名为悬浮电磁铁R。
- 7) 复制刚体悬浮电磁铁 R,重命名为导向电磁铁 L,选择几何导向电磁铁 L,修改质心坐标(0,0.08,0)。
- 8) 复制刚体导向电磁铁 L,重命名为导向电磁铁 R,选择几何导向电磁铁 R,修改质心坐标(0,-0.08,0)

9) 创建第一个铰, Body1 选择 Base0, Body2 选择构架, 类型为 6 d.o.f., 较点坐标都为各自的原点, 无需修改。

图 3-116

10) 创建第二个铰, Body1 选择构架, Body2 选择悬浮电磁铁 L, 类型为6
 d.o.f.,两个物体铰接点坐标分别为(0, 1.1, -0.475)和(0, 0, 0),
 悬浮电磁铁相对构架具有沿 X、Z 轴平动及绕 Y 轴转动的自由度。

图 3-117

11) 复制生成第三个铰, Body2 更改为悬浮电磁铁 R, Body1 的铰接点坐标为(0, -1.1, -0.475)。

12) 复制生成第四个铰, Body2 更改为导向电磁铁 L, Body1 的铰接点坐标为(0, 1.465, -0.18),导向电磁铁相对构架具有沿 X、Y 轴平动及绕 Z 轴转动的自由度。

图 3-118

13) 复制生成第五个铰, Body2 更改为导向电磁铁 R, Body1 的铰接点坐标 为(0, -1.465, -0.18)。切换到整体视图模式,如图 3-119 错误!未找到 引用源。。

图 3-119

3.3.1.2 悬挂力元

 选中左侧模型树 Special forces,点击右侧按钮[◆],添加一个力元,选择 类型 Bushing, Body1 选择构架, Body2 选择悬浮电磁铁 L,勾选 Autodetection,在 Body1 界面设置连接点(1, 1.1, -0.8)。

图 3-120

- 在 Description 页面设置线性刚度 CX = 5e6, CZ = 5e6, CAY = 1e5, DX = 5e4, DZ = 5e4, DAY = 1e3, 定义初始悬浮力 FZ = -fz1, 缺省赋值 0。
- 3) 在左侧下方的参数列表窗口,双击参数符号 fz1,定义表达式:
 - **9.81*(m_carbody/n_bogies+m_frame+2*m_magnet)**/4,程序会自动创建 m_carbody 和 n_bogies 两个符号,分别输入数值 15000 和 6。

图 3-121

- 4) 复制生成第二个 Bushing 力元,修改 Body1 的连接点坐标为(-1, 1.1, -0.8)。
- 5) 复制生成第三个 Bushing 力元,将 Body2 更改为悬浮电磁铁 R,修改 Body1 的连接点坐标为(1, -1.1, -0.8)。
- 6) 复制生成第四个 Bushing 力元,修改 Body1 的连接点坐标为(-1, -1.1, -0.8)。
- 7) 复制生成第五个 Bushing 力元,将 Body2 更改为导向电磁铁 L,修改 Body1 的连接点坐标为(1, 1.6, -0.18)。

图 3-122

8) 在 Description 页面设置线性刚度 CX = 5e6, CY= 5e6, CAZ = 1e5, DX = 5e4, DY = 5e4, DAZ = 1e3, 定义初始导向力 FY = fy0*1000, fy0=5。

图 3-123

- 9) 复制生成第六个 Bushing 力元,修改 Body1 的连接点坐标为(-1, 1.6, -0.18)。
- 复制生成第七个 Bushing 力元,将 Body2 更改为导向电磁铁 R,修改 Body1 的连接点坐标为(1,-1.6,-0.18),修改横向预压力 FY = -fy0*1000。
- 11) 复制生成第八个 Bushing 力元,修改 Body1 的连接点坐标为(-1, -1.6, -0.18)。
- 12) 选中左侧模型树 Linear forces,点击右侧按钮 →,创建第一个空气弹簧 力元,Body1 选择构架,Body2 选择 External,选择几何空气弹簧,勾 选 Automatic computation for 2nd body,输入弹簧下点和上点坐标(0.8, 1.2,0.6)和(0.8,1.2,0.9)。

图 3-124

13) 在 Parameters 页面,定义弹簧预压力 fz2,回车,点击 Accept,然后到 左侧列表双击 fz2,在弹出窗口定义表达式:m_carbody*9.81/n_bogies/4。

14) 点击 Stiffness matrix 栏的按钮,输入刚度矩阵,如错误!未找到引用源。,
 其中 kxy 2 为纵向和横向刚度(1e4), kz 2 为垂向刚度(2e5)。

ordinate			coordinate-angle		
C	C	C	C	<u>c</u>	C
c kxy_2	C.	C	C	C	C
C	c kz_2	C	C	C	C
ate			angle-angle		
C	C	C	C	C	C
C	C	C	C	C	C
C	E	C	C	C.	C
	c kxy_2 c kxy_2 c c ste c c c	profinate C C C C C C C E C C C C C C C C C C C C C C C	vrdinate c c c c c c kxy₂ c c c c c c c kz₂ c kc c c c c c c c c c kc c c c c c c c c c c c c c c c c c	coordinate coordinate-angle © © © © kxy_2 © © © © kz_2 © © te © © © © © © © © © © © © © © © © © © ©	coordinate coordinate-angle ©

15) 点击 Damping matrix 栏的按钮,输入阻尼矩阵,如错误!未找到引用源。,
 其中 cxy 2 为纵向和横向阻尼(2e3), kz 2 为垂向阻尼(3e3)。

elements coordinate-coordinate			coordinate-angle		
cxy_2	C.	C	C	<u>C</u>	C
c cxy	_2 C	C	C	C.	<u>C</u>
C	CZ_2	C	C	C	C
ingle-coordinate			angle-angle		
C	C	C	C .	C	C
C	C	C	C	C	C
C	C	C	E	C	C
	,			OK	Cancel

- 16) 复制生成第二个空气弹簧力元,修改弹簧下点和上点坐标(-0.8, 1.2, 0.6)和(-0.8, 1.2, 0.9)。
- 17) 复制生成第三个空气弹簧力元,修改弹簧下点和上点坐标(0.8, -1.2, 0.6)和(0.8, -1.2, 0.9)。
- 18) 复制生成第四个空气弹簧力元,修改弹簧下点和上点坐标(-0.8, -1.2, 0.6)和(-0.8, -1.2, 0.9)。

图 3-128

19) 选中左侧模型树 Contact forces, 点击右侧按钮 🕈, 创建一个接触力元,

Body1 选择构架, Body2 选择 Base0, 选择类型 Point-Plane, 定义 Body1 的某些点与 Body2 的某平面有接触关系。

20) 在 Parameters 页面设置动摩擦系数 0.3, 静摩擦系数 0.36, 接触刚度 1e8, 接触阻尼 1e4, 勾选单侧接触 Unilateral contact 和无限平面 Unlimited plane。

图 3-129

21) 在 Geometry 页面,定义 Body1 的点: (0.8, 1.1, 0.02), (0.8, -1.1, 0.02), (-0.8, -1.1, 0.02) 和 (-0.8, 1.1, 0.02),定义 Body2 的平面: 通过点 (0, 0, 0) 法向为 (0, 0, 1)。

图 3-130

3.3.1.3 加速度传感器

 选中左侧模型树 Subsystems,点击右侧按钮 →,添加一个子系统,重 命名为垂向传感器 LF,从下拉菜单中选择 Included,然后在文件浏览 器中选择 "D:\UM 培训教程\子系统\传感器"。

Object 高速磁浮车辆	莫型		- 🗆 ×
🗸 🔅 Object		art do 14 arts 27	_ _ _
		Name: 垂回传感器	
F≪ Variables		Type:	
Attributes		i i i i i i i i i i i i i i i i i i i	Ť
Subsystems		Comments/Text att	tribute C
· ? 垂向传感器LF	🕣 Open object	×	
> 🖶 Images			
> 🥩 Bodies	Scan the forder:	n	
> 🔍 Joints	D:\UM培训教程-2020\子系统	2 ~	
Bipolar forces			
Scalar torques	✓ - 一 D:\UMI言训教程-2020\子条统		
> S Linear forces			
T Forces	OFT T	тъ	
Special forces		FI I	
Generations		+	
12 Indices		+	
- Summary			
The Coordinates			
🕞 🖻 🕂 🛍 🖻			
vvnoie list			
Name Expression		44	
m_carbody 1.5000000E	+4		
n_bogies 6			
fz 9.81*(m_ca	□ D:\UM培训教程-2020\子系统\传感器\		
fy0 5			
fz2 m_carbody*	9. OK Cancel		
kxy_2 1.000000E	+4		
kz_2 2.000000E	+5		
cxy_2 2000			
cz_2 3000	×		
<	>		

图 3-131

2) 将子系统垂向传感器 LF 复制七次,分别重命名为垂向传感器 LR、垂向传感器 RF、垂向传感器 RR、横向传感器 LF、横向传感器 LR、横向传感器 RF和横向传感器 RR,并将四个横向传感器里的 p0 设置为 0。

图 3-132

 创建第六个铰, Body1 选择悬浮电磁铁 L, Body2 选择垂向传感器 LF.Sensor, 类型为 6 d.o.f., 两个物体铰接点坐标分别为(1,0,-0.01) 和(0,0,0),约束其六个自由度。

	111						6
Name: 過浮电磁铁L_Sen 🕇 🖬 🗑 🗢	а И Г	lame:	遇	浮电磁铁L_Ser	- + 🕩	Î	\bigtriangledown
Bodv1: Bodv2:		soay1: ஆஜ்கா	;; ;241		BOOY2:		sor –
長浮申磁铁I ▼ 垂向传感器I F.Sensor ▼		ਤ)子吧¶	站市大	L <u> </u>		str.sen	
	T	ype:	76	d.o.f.			\sim
Type: 6 d.o.f. ~		Geome	try	Coordinates			
Geometry Coordinates		Tranck	ation	-			
Body 1 Body 2		degree	auor ac of	Idl f freedom:			
Body 2 Dody 2				a accordance			▲ /1
↓ Visual assignment		L X		0.0000000000	000		<u>/+</u>
Translation		Y	·	0.0000000000	000		^₊
x: 1		Γz		0.0000000000	000		1
v:		Rotati	onal				
		degree	es of	f freedom:			
2: -0.01		Orient	atior	n angles			
Rotation		3,1,2					\sim
×			Γ	0.000000000	000		+/
				0.0000000000000000000000000000000000000	000		_
		2		0.0000000000	000		∕₊
		3		0.0000000000	000		*∕₊
F 2 422				-			

图 3-133

- 复制生成第七个铰,更改 Body2 为垂向传感器 LR.Sensor,修改 Body1 的连接点坐标为(-1,0,-0.01)。
- 5) 复制生成第八个铰,更改 Body1 为悬浮电磁铁 R,更改 Body2 为垂向 传感器 RF.Sensor,修改 Body1 的连接点坐标为(1,0,-0.01)。
- 6) 复制生成第九个铰,更改 Body2 为垂向传感器 RR.Sensor,修改 Body1 的连接点坐标为(-1,0,-0.01)。
- 7) 复制生成第十个铰,更改 Body1 为导向电磁铁 L,更改 Body2 为横向
 传感器 LF.Sensor,修改 Body1 的连接点坐标为(0.9,0.03,0),设置
 绕 X 轴转动 90°。

- 8) 复制生成第十一个铰, 更改 Body2 为横向传感器 LR.Sensor, 修改 Body1 的连接点坐标为(-0.9, 0.03, 0)。
- 9) 复制生成第十二个铰,更改 Body1 为导向电磁铁 R,更改 Body2 为横
 向传感器 RF.Sensor,修改 Body1 的连接点坐标为(0.9,-0.03,0),设
 置绕 X 轴转动-90°。
- 10) 复制生成第十三个铰,更改 Body2 为横向传感器 RR.Sensor,修改 Body1 的连接点坐标为(-0.9, -0.03, 0),切换到完整视图,如图 3-135。

图 3-135

3.3.1.4 磁浮力元

 选中左侧模型树 Special forces,点击右侧按钮 →,添加一个力元,选 择类型 Maglev force, Body1 选择悬浮电磁铁 L, Body2 选择 Base0, 设置作用点(1,0,0),选择悬浮力 Leviation magnet,作用方向为 Z 轴正向(0,0,1),选择传感器垂向传感器 LF.a_sensor,定义垂向悬 浮力 FZ LF。

图 3-136

- 2) 复制生成第二个悬浮力,作用点(-1,0,0),选择传感器垂向传感器 LR.a_sensor,定义垂向悬浮力 FZ_LR。
- 3) 复制生成第三个悬浮力,更改 Body1 为悬浮电磁铁 R,作用点(1,0,0),选择传感器垂向传感器 RF.a_sensor,定义垂向悬浮力 FZ_RF。
- 4) 复制生成第四个悬浮力,作用点(-1,0,0),选择传感器垂向传感器
 RR.a_sensor,定义垂向悬浮力 FZ_RR。

5) 复制生成第一个导向力,更改 Body1 为导向电磁铁 L,作用点(0.9,0,0),作用方向为 Y 轴负向(0,-1,0),选择传感器横向传感器 LF.a_sensor, 定义横向导向力 FY_LF。

图 3-137

- 6) 复制生成第二个导向力,作用点(-0.9,0,0),选择传感器横向传感器 LR.a_sensor,定义横向导向力 FY_LR。
- 7) 复制生成第三个导向力,更改 Body1 为导向电磁铁 R,作用点(0.9,0,0),作用方向为Y轴正向(0,1,0),选择传感器横向传感器 RF.a_sensor, 定义横向导向力 FY RF。

图 3-138

8) 复制生成第四个导向力,作用点(-0.9,0,0),选择传感器横向传 感器 RR.a_sensor,定义垂向悬浮力 FY_RR。

3.3.1.5 整车装配

 左侧选中模型树 Object,在右侧 General 页面点击按钮 Transform into subsystem,这样就把一个悬浮架模型压缩成了一个子系统,便于整体 操作。

图 3-139

2) 重命名为悬浮架 1, 在 Position 定义 X 平动-2-2.9*0.5m。

图 3-140

3) 将子系统悬浮架1复制五次,分别重命名为悬浮架2、悬浮架3、悬浮架4、悬浮架5和悬浮架6,Position分别定义X平动为-2-2.9*1.5m、-2-2.9*2.5m、-2-2.9*3.5m、-2-2.9*4.5m和-2-2.9*5.5m。

4) 从"D:\UM 培训教程\几何素材\高速磁浮车辆模型"导入几何素材车体。

5) 在左侧参数符号列表区点右键,选择菜单 Add from subsystem...,从列 表中选择悬浮架1子系统里的 m_frame、m_magnet、m_carbody 和 n_bogies 参数。

6) 创建**车体**刚体,定义质量 m_carbody,转动惯量(5e4, 3e5, 3e5),质

心坐标 (-10.7, 0, 1.5); 点击按钮 ☞, 创建一个六自由度铰。

图 3-142

7) 然后,我们需要将车体和六个悬浮架子系统建立连接。在二系力元建模时,还没有车体这个物体,因此所有的 Body2 都选择为一个虚拟物体 External,两个连接点的坐标都在 Body1 坐标系中定义的。在左侧模型 树选中 Connection,到右侧交互界面选中任意一个力元,点右键,选择 Assign to all,然后选择车体局部坐标系的原点(实际车体上的任意点均 可),这样就用车体替换了子系统里的 External 虚拟体。

8) 为了便于控制,我们在这里定义一个名义悬浮力 fz0

= 9.81*(m_carbody/n_bogies/4+m_frame/4+m_magnet)/1000.

✓ Object ✓ Object ✓ Ourves ✓ Variables	ē _	100 Eat # 1		
● Attributes > 個 Subsystems > 骨 王体 > 骨 王体 > 野 Bodies □ 雪 年体 > 像 bints		°Q [¶ ₩	Edit expression	 ○ 長手架12=2時署は−2→5体(0,0,0) ○ 長手架12=2時署は−2→5体(0,0,0) ○ 長手架12=2時署は−2→5体(0,0,0) ○ 長手架12=2時署は−2→5体(0,0,0) ○ 長手架22=2時署は−2→5体(0,0,0) ○ 長手架22=2時署は年2→5本(0,0,0)
Base0_≠(‡ Base0_≠(‡ Base0_≠(‡ Scalar torques Unear forces Contact forces Ort-forces Special forces Special forces Contact forces Ort-forces Ort-forces	3	Add identifie Name:	I + - * / () sn cos aos pow sgn n exp i 9.81*(m_carbody/n_bogies/4+m_frame/4+m_magnet)/1000	sqrt sqr 1/
Vhole list		Expression:		
tame Expression Value 0 20 0 n_frame 1000 0 n_magnet 600 0 carbody 1.500000E+4 0	Commen	Comment:		
n_bogies 6				
			OK Check Cancel	

图 3-145

9) 最后,在左侧模型树选中 Object,右侧 General 界面 Comments 处输入 备注 Monorail (如果模型中无轮胎力元,这一步可略去)。

图 3-146

10) 点击 Summary,检查是否有逻辑错误,保存模型,关闭 UM Input 程序。

3.3.2 高速磁浮车辆动力学仿真

1) 运行 UM Simulation 程序,加载高速磁浮车辆模型。自由调整动画窗口 大小、位置和视图方向。

图 3-147

2) 打开仿真控制面板,选择 Park 求解器,设置仿真时间 30s,设置数据采 样步长为 0.005s,容差为 1e-7,勾选 Computation of Jacobian。

Info	rmation		Tools	🪍 м	lonorail train
Solver	Ide	ntifiers	Initial conditions	Object variabl	es XVA
Simulation process p	parameters	Solver options	Type of coordinates for bodies	PP: Options	
Solver BDF ABM Park Gear 2 Park Parallel	ту С	ype of solution) Null space met) Range space n	hod (NSM) nethod (RSM)		
Step size for animat Error tolerance Delay to real time Keep system mai Computation of Block-diagona	ion and data e simulation trix decompo Jacobian al Jacobian	a storage 0.005	5		

图 3-148

3) 切换到 Monorail → Tools 页面,从下拉菜单选择 Beam section profile。 然后点击 Data Input/Edit 栏的…l按钮,弹出曲线编辑器,点击曲线编 辑器工具栏按钮 →,读取"D:\UM 培训教程\曲线素材"路径下的高速 磁浮轨道梁.crv 文件。

4) 切换到 Options and parameters 页面,设置轨道线路和不平顺等参数如
 图 3-150。

Information			Tools			🚍 Monorail train
≥ B <u>k</u>						
Options and parameters Tools	Identification	Resistance	Speed	Flexible track	MagLev	
Use irregularities						
Type of track			-			
 Undeformed 			() Fle	xible		
Tire force visualization						
Longitudinal force (Fx)						
Lateral force (Fy)						
Vector length in wheel radius	5.0					
	5.0					
Lateral displacement	0.00					
Macro-geometry						
□:\UM培训教程-2020\由	÷线素材\R300.mc	g				<u> </u>
Track roughness						
Levitation (left)	D:\UM培训教程-	2020\不平顺	样本\磁	孚\悬浮面_L.irr		1
Levitation (right)	D:\UM培训教程-	2020\不平顺	样本\磁	孚\悬浮面_R.irr		1
Guidance (left)		2020\不平顺	样本\磁	孚\导向面_L.irr		
Guidance (right)	D:\UM培训教程-:	2020\不平顺	样本\磁》	孚、导向面_R.irr		
Factor	1.000					
Coherent right irregularities						
Wired beam image						
Parameters						
Numeric parameters						
Name	Value					
Guideway base (m)	7					
Bridge pillar base (m)	30					
Shift along Z of pillar GO (m)	-3					
Beam-image step (m)	2					
Kinetic energy for stop (J)	0.01					
Integration		M				Class

图 3-150

5) 切换到 Maglev→Levitation 页面,选择悬浮控制模型 Spring/Damper, 并设置名义悬浮间隙 10mm,名义悬浮力 fz0=14.46975 (可双击单元格 从符号列表读取),单电磁铁质量 300kg,位移反馈系数 1e8N/m,速度 反馈系数 1e4 Ns/m。

Object simulation in	spector				
Solver	Identifiers	Initia	l conditions	Object variables	XVA
Inform	mation		Tools	🚍 Monorail tra	in
🖙 🖪 📐					
Options and parameter	rs Tools Identifi	cation Resistance	Speed Flexible tr	rack MagLev	
Levitation Options					
Levitation magnet mo	del				
Spring/damper		○ Magnet		OIdentifiers	
Acceleration model					
Sensor			O Prediction		
Linear spring/damper	model Single pale	magaat			
	Single pole	magnet			
Name		Identifier	Value		
Nominal gap S0 (mm))		10		
Force for nominal ga	ap F0 (kN)	fz0	14.46975		
Mass of magnet (kg))		▶ 高速磁浮车辆模	型 ^	
Spring constant Kp ([N/m)		···· È ∨0=20		
Damper constant Cp	(Ns/m)		····È m_frame=100 ····È m_magnet=60	00	
			m_carbody=1	15000	
			… È n_bogies=6		
			····································		
		>	▲ 是浮架2		
		>	🗳 悬浮架3		
		>	··· 🗗 悬浮架4 		
				×	
Integrati	ion	<		Close	

图 3-151

6) 切换 Maglev→Guiding 页面,设置如图 3-152。

	Id	lentifiers	Initial	conditions		Object variables	XVA
In	formation			Tools		🚍 Mono	orail train
🖻 🖪 🧎							
Options and param	eters Tools	Identification	n Resistance	Speed Flexible	e track	MagLev	
Levitation Guidin	9 Options						
Guidance magnet	model						
Spring/damper		0	Magnet		С) Identifiers	
Acceleration mode	el						
Sensor				O Prediction			
Sensor: comper	celeration in c	urves acceleration					
Sensor: comper Linear spring/dam	celeration in c isate gravity a per model s	urves acceleration Single pole magr	net				
Sensor: compensate ac Sensor: comper Linear spring/dam Identifiers Name	celeration in c asate gravity a per model S	curves acceleration Single pole magn Ide	entifier	Value			
Sensor: comperisate ac Sensor: comper Linear spring/dam Identifiers Name Nominal gap S0 (celeration in c isate gravity a per model s mm)	curves acceleration Single pole magr Ide	entifier	Value 20			
Sensor: comperise ac Sensor: comper Linear spring/dam Identifiers Name Nominal gap S0 (Force for nomina	celeration in c isate gravity a per model s mm) I gap F0 (kN)	curves acceleration Single pole magr Ide	net entifier 浮架1.fy0	Value 20 0			
Sensor: compensate ac Sensor: compensate ac Linear spring/dam Identifiers Name Nominal gap S0 (Force for nominal Mass of magnet	celeration in c isate gravity i per model s mm) I gap F0 (kN) (kg)	curves acceleration Single pole magr Ide	net entifier 浮架1.fy0	Value 20 0 300			
Sensor: comper Linear spring/dam Identifiers Name Nominal gap S0 (Force for nomina Mass of magnet Spring constant I	mm) Il gap F0 (kN) (kg) (vp (N/m)	urves acceleration ingle pole magr Ide 長	net entifier 浮架1.fy0	Value 20 0 300 1E8			
Sensor: comperisate ad Sensor: comper Linear spring/dam Identifiers Name Nominal gap S0 (Force for nomina Mass of magnet Spring constant Damper constan	celeration in c isate gravity i per model s mm) I gap F0 (kN) (kg) (kg) (kg) (kp (N/m) t Cp (Ns/m)	urves acceleration ingle pole magr Ide 人	net entifier 浮架1.fy0	Value 20 0 300 1E8 10000			

图 3-152

7) 切换到 Speed 页面,选择 v=0 模式。

Solver	Identif	fiers	Initial	condition	s		Object	/ariable	s		XVA
Info	rmation			Tools				F	Ionorail	train	
➡ ➡ ☐ ¾ ptions and paramet	ers Tools Id	dentification	Resistance	Speed	Flexible tr	ack	MagLev				
Speed mode Neutral				OPro	file						
-				-							
○ v=const ☑ Automatic termina ☑ Lock horizontal shi	tion of equilibriu ft of car body	ım test		● v=)						
○ v=const ☑ Automatic termina ☑ Lock horizontal shi	tion of equilibriu ft of car body	ım test		● v=)						

8) 点击 Integration,进行静平衡计算,经过 1s,提示"Test succed. Accept results?",点击是(Y)。

In	formation		
	Test succeed. Accept results?		
- 10		Process parameters	EX
	是(Y) 合(N)	Simulation time (s)	0.995
		Duration time (s)	15.413
		Step duration (s)	0.0036314
		Pause	
		3%	

图 3-154

- 9) 切换到 Speed 页面,选择 v=const 模式。
- 10) 切换到 Identification 页面,在下方 Gain 右边的单元格将参数设置为 **5000**°

oject simulation insp	ector							
Solver	Ident	ifiers	Initial	condition	IS	Object varia	ables	XVA
Informa	tion			Tools		Ę	Monorail trair	ı
≥ 🖪 🙀								
Options and parameters	Tools I	dentification	Resistance	Speed	Flexible track	MagLev		
Longitudinal speed contr	ol							~
Parameters								
Numeric parameters								
Name		Value						
Gain		5000						
Integral control factor		0						
							Class	

图 3-155

11) 切换到 Identifiers→List of identifiers 页面,设置车辆初始速度 v0 为 40, 在弹出窗口点击 OK。

Solver Identifiers Initial conditions Object variables List of identifiers Identifier control Image: Ima		Information		Tools	🪍 Monorail tr	ain
List of identifiers Identifier control Centrol Identifier control Comment Com	Solver	Identi	ifiers	Initial conditions	Object variables	XVA
回線 高速磁浮车辆模型 Whole list Comment Name Expression Value Comment v0 40 Comment m_frame 1000 Comment m_magnet 600 Comment m_carbody 1.5000000E+4 Comment	List of identifiers	Identifier control				
Whole list Expression Value Comment v0 40 m_frame 1000 m_magnet 600 m_carbody 1.500000E+4	🖻 🖻 📑	* 高速磁浮车	辆模型			
Name Expression Value Comment v0 40	Whole list					
v0 40 m_frame 1000 m_magnet 600 m_carbody 1.500000E+4	Name	Expression	Value	Comment		
m_frame 1000 m_magnet 600 m_carbody 1.500000E+4	v0	40				
m_magnet 600 m_carbody 1.500000E+4	m_frame	1000				
m_carbody 1.500000E+4	m_magnet	600				
	m_carbody	1.500000E+4				
n_bogies 6	n_bogies	6				
fz0 14.46975	fz0	14.46975				
fy0 0	fy0	0				

图 3-156

 12) 选择主菜单 Tools → Options,或在工具栏上修改车辆初始速度单位为 km/h。这里的单位只对 v0 参数有效,计算结果均为国际单位(m,rad, kg, s, N)。

Export to MS Exce	el Bug report	ts Wear parameter	rs
General	Autosave	Format of numbers	
General			
Automatically loa	ad the last model		
Automatically re	move incompatible v	variables	
Z-axis directed (while computin	downward g scalar variables)		
Temporary director	y:	Speed unit	
C:\Users\ADMINI~	1\AppData\Loc 🛃	í km/h ⊚ m/s	
Graphical windows			
Default pull-dow	n tool panel for gra	phical windows	
Double column to	ext file		
Prefix for comments	s:		
	(. 1

图 3-157

13) 打开**变量向导**,创建第一个悬浮架的四个悬浮力的悬浮间隙变量 Gap, 并拖入一个绘图窗口。

14) 创建第一个悬浮架的四个悬浮力的悬浮力矢量 Fv,并拖入动画窗口。

图 3-159

15) 在动画窗口点右键,选择 Position of vector list → Left,这样就在动画 窗口左侧显示列表。

10-	1 North		ı	
	Coordinate system			
-1	Grid	۲		~
	Rotation style	۲		
4	Modes of images	۲		
	Cameras	۲		*
	Camera follows 导向电磁铁L(E)			
	Look at			
	Position of vector list	•	• Left	
	Clear list of vectors		Right	
	Vector settings		Тор	
	Add characteristic for this body/point	•	Bottom	
	Show vectors for tyre/road interaction		Hide	
	Set graphic object	•		,
	Background color			
	Window parameters			
			1	
	图 3-160			
www.universalmechanism	.com - 174 -			ww

16) 双击悬浮力矢量 Fv, 修改颜色。

Animation window Vectors / Trajectories	Q
✓ Fv (悬浮架1.悬 ✓ Fv (悬浮架1.悬 ✓ Fv (悬浮架1.悬 ✓ Fv (悬浮架1.悬	Options of vector X Color
	Vector arrow is in the application point
	OK Cancel

图 3-161

17) 在动画窗口点右键,选择 Vector seting,设置力矢量单位长度表示的大小为 15000。

18) 在模型动画窗口点右键,选择菜单 Camera → Add camera in current position, Camera → Camera setting,在 Camera follow the body 可选 择镜头跟随车体。

Cameras	
List of cameras: Free camera Camera 1	Camera name: Camera 1 Camera follows the body: 车体
	 Base0
	□ 导向电磁铁R □ 垂向传感器LF ✓ ✓ Position: Look at: X: 3.38 ✓ ✓
	Y: 13.10 Y: 0.00 Y: Z: 14.34 Y: 0.00 Y: Apply Apply

图 3-163

- 19) 点击仿真控制面板 Integration 按钮开始仿真。
- 20) 在绘图窗口点右键,选择菜单 Show all,可自动调节以适应窗口。

图 3-164

21) 仿真过程如图 3-165, 如果将动画窗口最小化, 计算会非常快。

图 3-165

注: 读者可以选择软件自带的单极电磁铁控制模型或自定义控制模型 (Matlab/Simulink、UM Block Editor)进行仿真计算。